张梦 1王欣 1,2,*杨苏辉 1,2,3李宝 4[ ... ]高彦泽 1,2
作者单位
摘要
1 北京理工大学光电学院,北京 100081
2 北京理工大学学精密光电测试仪器及技术北京市重点实验室,北京 100081
3 北京理工大学信息光子技术工业和信息化部重点实验室,北京 100081
4 中国电子科技集团第十一研究所,北京 100015
长波红外量子级联激光器(QCL)具有波长设计灵活、体积小、寿命长等优点。目前单横模QCL较低的输出功率(1~3 W)是限制其应用的主要因素。光纤功率合束技术是提升输出功率的有效手段。然而由于长波红外波段缺少低传输损耗的玻璃光纤,使得高效率长波红外光纤功率合束的实现难度很大。本文研究了基于低损耗单模空芯光纤的长波红外激光功率合束技术。针对基横模长波红外QCL有源区尺寸大、发散角大的特点,设计了大数值孔径扩展光源双非球面准直镜,有效提高了单模光纤耦合效率。设计制备了无端面损耗的长波红外单模光纤束,光纤传输效率高达91.2%,实现了7.6~7.8 μm波段QCL的高效率合束。当4个长波红外QCL的输出总功率为2.27 W时,采用所设计的光纤耦合光学系统及制备的4×1单模空芯光纤合束器获得了1.5 W的连续输出,总合束效率为66%。此外,测量得到单根单模长波红外光纤耦合输出光的光束质量因子M2为1.2,光强分布和光束质量因子均优于QCL的直接输出激光,说明空芯单模光纤具有一定的非高斯光束模式净化作用。合束光束的传输质量因子为2.6,依然具有较好的光束质量。本文所研究的光纤合束方式对QCL的输出波长、偏振态均不敏感,且具有良好的可扩展性。实验结果表明,此方式可有效解决长波红外QCL单元器件输出功率偏低的问题。
长波红外 量子级联激光器 光纤合束 耦合效率 空芯光纤 
光学学报
2024, 44(8): 0814003
魏磊 1,2,4,*李宝 4陈国 4方聪 4[ ... ]王英俭 1
作者单位
摘要
1 中国科学院安徽光学精密机械研究所中国科学院大气光学重点实验室, 安徽 合肥 230031
2 中国科学技术大学研究生院科学岛分院, 安徽 合肥 230026
3 安徽省光子器件与材料重点实验室, 安徽 合肥 230031
4 华北光电技术研究所固体激光技术重点实验室, 北京 100015
长波红外波段的激光在大气中能够低损耗传输,这就使得长波红外激光具有广泛应用的天然优势,其中长波红外激光可用作红外光电对抗光源,特别是随着长波红外探测器的发展,其对相应波段的对抗光源的需求与日俱增。为此设计并搭建波长为2.05 μm Ho∶YLF激光来泵浦长波CdSe光参量振荡器的实验装置,该装置可以输出峰值波长为12.5 μm的高重频长波红外激光。激光器在重复频率5 kHz情况下的平均功率最高达526 mW,Ho∶YLF激光到长波激光的光光转换效率为1.46%,斜效率为23.4%,激光单脉冲宽度为24.4 ns,单脉冲能量为0.1 mJ,单脉冲峰值功率为4.3 kW,X方向的光束质量因子为4.3,Y方向的光束质量因子为3.2。
激光光学 长波红外 Ho∶YLF; CdSe 光参量振荡器 
中国激光
2021, 48(24): 2401004
魏磊 1,2,3,4吴德成 1,3刘东 1,3赵书云 4[ ... ]王英俭 1,3,*
作者单位
摘要
1 中国科学院安徽光学精密机械研究所中国科学院大气光学重点实验室, 安徽 合肥 230031
2 中国科学技术大学研究生院科学岛分院, 安徽 合肥 230026
3 先进激光技术安徽省实验室, 安徽 合肥 230037
4 华北光电技术研究所固体激光技术重点实验室, 北京 100015
以2.05μm Ho∶YLF激光器作为光源,泵浦了长波ZnGeP2 光参量振荡器,实现了高效率、高重复频率的长波激光输出。激光器输出的峰值波长为8.1μm,最大输出功率为3.2W@10kHz,泵浦激光到长波激光的光光转换效率为12%,斜效率为19.3%,激光单脉冲宽度为27.11ns,单脉冲能量为0.32mJ,单脉冲峰值功率为11.8kW,X方向的光束质量因子为4.5,Y方向的光束质量因子为4.2。
激光器 长波红外激光 Ho∶YLF; ZnGeP2 光参量振荡器 
中国激光
2021, 48(1): 0101002
作者单位
摘要
1 华东师范大学精密光谱科学与技术国家重点实验室, 上海 200062
2 吉林大学电子科学与工程学院集成光电子学国家重点实验室, 吉林 长春 130012
CN自由基在生命形成过程中起着重要作用。在早期行星大气中, CN的生成与氮气(N2)和甲 烷(CH4)有密切关系。以土卫六大气成分为参考,利用CH4和N2的混合气体模拟早期大气环境,并对模拟大气进行辉光放电产生CN 自由基,通过测量CN自由基的吸收光谱研究了CH4、N2比例和土卫六大气中的痕量气体对CN生成的影响。在N2和 CH4混合气体的低压辉光放电中,当CH4气压占总气压的20%左右时, CN自由基的生成浓度最大。保持N2和CH4气压配比不变而 改变总气压时,起初CN自由基浓度随总气压增加而增加;当总气压超过60 Pa时, CN自由基浓度随着总气压的增加趋缓;而当总气压大于90 Pa时, CN浓度随着总气压的增加缓慢减少。在给定气压和CH4-N2浓度配比条件下, CN自由基的浓度都随放电电流增加而增大。土卫六大气中存 在痕量水汽(H2O)、二氧化碳(CO2)和一氧化碳(CO), 在N2和CH4混合气体放电过程中加入少量这些气体都会抑制CN自由基的生成。
大气光学 CN自由基 辉光放电 甲烷-氮气 atmospheric optics CN radical glow discharge methane-nitrogen 
量子电子学报
2020, 37(2): 144
作者单位
摘要
华北光电技术研究所 固体激光技术重点实验室, 北京 100015
报道了一种高功率Tm:YAP激光器实验装置, 采用b轴切割的YAP/Tm:YAP/YAP复合晶体作为激光增益介质, 使用中心波长为795 nm的LD模块进行双端泵浦, 当增益介质冷却温度为20 ℃, LD总泵浦功率为301.4 W时, 获得了最高109.5 W的1.94 μm波长线偏振激光输出, 光-光转换效率约为36.3%, 斜率效率约为45.8%, 在此输出功率条件下测得光束质量M2因子为3.8。
1.94 μm激光器 端面泵浦 LD泵浦 高功率 1.94 μm laser end-pumped LD pump high power Tm:YAP Tm:YAP 
红外与激光工程
2019, 48(4): 0405006
作者单位
摘要
中国电子科技集团公司第十一研究所激光技术研究部固体激光技术重点实验室, 北京 100015
非稳腔在大菲涅耳数条件下可实现光的高效提取效率, 也可保持高光束质量。设计了一款用于Nd∶YAG板条增益介质的传导冷却端面抽运结构的望远镜型离轴介稳-非稳混合谐振腔, 输出耦合镜为变反镜。该混合腔的宽度方向(板条增益介质的x方向)为非稳腔, 厚度方向(板条增益介质的y方向)为介稳腔。通过理论分析得出, 当抽运功率为10 kW时, 该介稳-非稳混合腔结构的输出功率为4428.7 W, 光-光转换效率为0.4429。
激光器 半导体激光器 激光谐振腔 传导冷却端面抽运结构 变反镜 
激光与光电子学进展
2017, 54(10): 101403
作者单位
摘要
湖南大学 信息科学与工程学院,长沙 410082
基于导频辅助法,对相干光正交频分复用系统中采样时钟频率偏差进行估计和补偿, 并研究了导频的插入位置对该算法补偿效果的影响, 通过对五种不同的导频插入位置进行分析和比较, 得到最优导频插入位置.仿真结果表明: 本文算法即使在较大的频率偏移情况下也有较好的补偿效果, 并且采用该方法得到的光信噪比损耗不到1 dB, 可以有效地降低系统成本;不同导频插入位置对算法的补偿效果会产生影响, 在较小采样频率偏移范围内时, 导频平均插入方式为最优.如果采样频率偏移量较大, 在导频平均插入不能很好地补偿的情况下,导频应尽量插在低频位置.
光通信技术 相干光 导频辅助 采样时钟频率偏差 正交频分复用 导频 估计 补偿 Optical communication Coherent optics Pilot-aided Sampling clock frequency offset Orthogonal frequency-division multiplexing Pilots Estimation Compensation 
光子学报
2015, 44(1): 0106003
作者单位
摘要
1 重庆邮电大学数理学院
2 重庆邮电大学光电工程学院,重庆 400065
3 重庆邮电大学西安工程大学 电子信息学院,西安 710048
以高介电常数介质为基底,利用辐射贴片开槽和微带馈电技术,设计了一款尺寸仅为16mm×12.45mm的小型微带天线。通过在此天线微带贴片周围加载高阻抗表面型光子晶体,有效抑制了表面波,改善了以高介电常数介质为基底的贴片天线的性能,实现了一款多频小型化PBG天线。HFSS仿真结果表明,加载高阻抗表面结构后的微带天线出现了三个谐振频点,分别为2.74、2.86和3.80GHz,其对应的增益分别达到6.02、8.38和5.69dB。所设计的光子晶体天线物理尺寸较小,方向性良好且具有多频特性,因此可为实际通信天线的应用提供参考。
光子晶体 微带天线 增益 photonic crystals PBG PBG microstrip antenna gain 
半导体光电
2013, 34(3): 424

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!