作者单位
摘要
1 中国农业大学烟台研究院, 山东 烟台 264003中国农业大学智慧农业系统集成研究教育部重点实验室, 北京 100083
2 中国农业大学智慧农业系统集成研究教育部重点实验室, 北京 100083中国农业大学农业农村部农业信息获取技术重点实验室, 北京 100083
3 中国农业大学烟台研究院, 山东 烟台 264003中国农业大学农业农村部农业信息获取技术重点实验室, 北京 100083
土壤磷素是植物最重要养分之一。 磷素在土壤中动态性强, 检测困难, 在可见-近红外光谱范围没有明显吸收波段, 因此研究基于其他光谱手段的磷素快速检测方法对于发展精细农业和智慧农业具有重要意义。 拉曼光谱具有受水分干扰小, 样本预处理小、 与红外光谱信息互补等特点, 国内外很多学者尝试了应用拉曼光谱对土壤磷素的检测。 但是, 拉曼信号弱, 稳定性差, 制约了拉曼光谱在土壤检测方面的应用。 为进一步弄清拉曼光谱与磷素的定量关系, 采用水溶性磷(KH2PO4)为研究对象, 研究了不同磷浓度的KH2PO4溶液对拉曼光谱产生的影响。 采用移动平均(MA)、 MA+基线校正(BL)、 MA+标准正态变量(SNV)、 MA+多元散射校正(MSC)对原始光谱(RS)进行预处理, 分析了低浓度(0.02~5 g·L-1)与高浓度(5.21~93.87 g·L-1)区间KH2PO4拉曼光谱的变异特性及其与磷浓度之间的关系, 建立了磷浓度含量的预测模型。 结果表明: (1)低浓度区间与高浓度区间光谱的变异系数具有显著差异, 高浓度区间光谱的离散程度较大; (2)低浓度区间的拉曼光谱未检测到明显的拉曼波峰, 浓度变化展现了明显的基线变化。 偏最小二乘(PLSR)模型决定系数R2=0.28~0.36; (3)高浓度区间的拉曼光谱在863与1 070 cm-1处检测到明显的拉曼波峰, PLSR建模结果为R2=0.65~0.7。 MA+SNV、 MA+MSC处理比MA单独处理模型预测精度高, 说明磷酸根的拉曼特征峰为模型主要贡献因子; (4)使用全浓度区间PLSR建模可增加PLSR模型精度(R2=0.73~0.89)。 使用RS建模的精度最高, 说明基线漂移对PLSR结果具有积极作用; (5)通过PLSR回归系数, 选取645、 863、 1 070和1 412 cm-1四点波段建立多元线性回归(MLR)模型, 决定系数R2接近1。 说明特征峰选取可以滤除背景光干扰, 抽取有效磷酸根浓度信号。 (6)由以上结果可知, 利用拉曼光谱定量检测水溶性磷的含量是可行的, 降低背景光干扰、 提高拉曼信号的稳定性的同时, 开发特征波段选择方法、 提高模型可重复性及抗干扰能力是高分辨率拉曼光谱检测技术的关键。
拉曼光谱 土壤磷素 光谱分析 变异系数 回归系数 Raman spectroscopy Soil phosphorus Spectral analysis Coefficient of variation Regression coefficient 
光谱学与光谱分析
2023, 43(12): 3871
作者单位
摘要
1 中国农业大学“智慧农业系统集成研究”教育部重点实验室, 北京 100083
2 中国农业大学“智慧农业系统集成研究”教育部重点实验室, 北京 100083中国农业大学农业农村部“农业信息获取技术”重点实验室, 北京 100083
叶面积指数(LAI)是评价作物长势的重要参数, 快速、 准确、 低成本地获取作物LAI对于指导作物田间管理有重要的意义。 为了低成本获取多种作物的LAI, 基于多源信息和深度学习构建了通用的LAI预测模型。 在大豆、 小麦、 花生、 玉米四种作物的六个生长时期进行了大田实验, 以获取用于建模的多源信息。 使用航拍无人机获取作物低空可见光图像、 红边图像和近红外图像等多光谱图像信息, 此外还采集相关的一维数据信息, 包括无人机飞行姿态、 拍摄高度、 作物生长状态和环境光照。 借助深度学习出色的图像和数据处理能力建立基于复杂输入信息的LAI预测模型, 考虑到一维数据也要参与模型的训练过程, 在设计模型时, 采用了组合型网络架构。 在卷积神经网络(CNN)算法提取图像深度特征的基础上加入了LightGBM算法用于结合图像特征和一维数据实现作物LAI的最终预测。 CNN模型部分使用了VGG19, ResNet50, Inception V3和DenseNet201四种常见的结构。 为了更好地说明CNN模型提取图像特征的能力, 分析了不同图像输入下四种模型的作物分类情况。 结果表明, 以可见光、 红边和近红外图像为输入时, 四种模型的分类准确度均相较于仅有可见光图像时有所提高, 尤其是基于Inception V3和DenseNet201的两种模型分类准确率均达到99%以上, 证明了CNN模型提取多光谱图像特征的有效性。 将图像特征作为LightGBM模型的输入信息预测LAI时, 实测值与预测值的R2最大为0.819 2, 而在输入中加入一维数据信息后, 模型的R2均可达到0.9以上, 说明多源信息输入对于提高LAI预测模型的准确度有重要作用。 该研究建立的模型可以针对不同的作物进行LAI的预测, 不需要对多光谱图像进行复杂的处理, 因此, 该研究可以实现LAI的低成本、 快速预测, 同时可以获得较高的预测准确度。
叶面积指数 多光谱图像 多源信息 组合型网络架构 预测模型 Leaf area index Multispectral image Multi-source information Combined network architecture Prediction models 
光谱学与光谱分析
2023, 43(12): 3862
作者单位
摘要
中国农业大学现代精细农业系统集成研究教育部重点实验室, 北京 100083
土壤粒度是对土壤近红外光谱造成严重干扰的主要因素之一。 通常在样本前处理阶段采用研磨和过筛土壤来降低土壤粒度干扰, 在数据处理阶段通过对连续光谱微分法等数学方法消除土壤粒度干扰。 但是对于近红外波段离散波长的建模, 至今没有有效的方法消除土壤粒度干扰。 为此, 提出了土壤粒度修正法以解决土壤粒度干扰消除难题。 首先建立土壤粒度修正模型, 将农田采集的标准土壤在实验室烘干消除水分后, 进行土样配置, 得到4个土壤粒度(2.0, 0.9, 0.45, 0.2 mm)和6个全氮浓度等级(0, 0.04, 0.08, 0.12, 0.16, 0.2 g·kg-1)的96个土壤样本。 采用MATRIX-Ⅰ型傅里叶变换近红外光谱仪采集土壤样本近红外光谱, 计算四个不同粒度(每个粒度包含24个土壤样本)和全部土壤样本在每个波长处(850~2 500 nm)所有样本间吸光度的光谱标准偏差, 分析得到土壤粒度的特征波段为1 361和1 870 nm。 采用特征波段吸光度比值作为单一输入变量建立SVM土壤粒度分类模型, 土壤粒度整体分类准确率为93.8%, 表明对土壤粒度进行分类是可行的。 选择本研究团队开发的基于近红外波段离散波长(1 070, 1 130, 1 245, 1 375, 1 550, 1 680 nm)吸光度的车载土壤全氮检测仪对提出的土壤粒度修正模型进行验证。 结果表明修正后粒度为2.0, 0.9和0.45 mm的吸光度和原始土壤吸光度分别降低了62%, 74%, 111%和61%。 表明土壤粒度修正法可以显著减小土壤粒度干扰。 最后采用BPNN建立不同吸光度的全氮模型, 相较于原始吸光度模型, 修正后的土壤吸光度模型Rv2提高了25%。 表明提出的土壤粒度修正法可以显著减小土壤粒度对近红外光谱离散波长吸光度的干扰, 提高车载土壤全氮检测仪的测量精度。
土壤粒度干扰 近红外离散波长 光谱标准偏差 土壤粒度修正法 Soil particle size disturbance NIR discrete wavelength Standard deviation Soil particle size correction method SVM SVM 
光谱学与光谱分析
2021, 41(12): 3682
作者单位
摘要
中国农业大学现代精细农业系统集成研究教育部重点实验室, 北京 100083
为了快速感知并分析田间作物生长状况, 采用先进的半导体镀膜工艺的光谱成像传感器, 研究镀膜型光谱成像数据的提取与叶绿素含量分布式检测的方法。 实验采用基于镀膜原理的IMEC 5×5成像单元式多光谱相机, 对47株苗期玉米植株的冠层进行拍摄, 获取673~951 nm范围内的25个波长的光谱图像。 利用SPAD-520叶绿素仪非破坏性地测量叶绿素含量指标, 每株玉米冠层叶片设置2~3个采样点, 每点测量3次取平均, 共计251个样本数据; 同时使用ASD Handheld2型光谱仪采集相应位置区域的反射率曲线, 以对比分析镀膜型光谱成像传感器提取玉米植株冠层叶片反射率曲线的特性。 首先, 在分析镀膜型光谱成像传感器的成像原理的基础上, 通过对原始图像的拆分和重组分别提取成像单元中相同波段的像素灰度值, 并利用相同波段的像素灰度值重构单波段光谱图像, 获取各波段光谱图像。 其次, 利用4灰度级标准板建立图像灰度值和灰度板反射率之间的线性反演公式, 对提取的反射率进行校准。 然后, 为了准确分割出玉米植株冠层, 提出了大津算法(OTSU)和霍夫圆变换组合的玉米植株冠层图像二次分割方法, 分别剔除图像中土壤和培养盆背景的干扰。 最后, 利用马氏距离算法剔除异常样本数据, 利用SPXY (sample set partitioning based on joint X-Y distance)算法划分建模集和验证集, 采用偏最小二乘回归法(PLSR)建立玉米植株叶绿素含量指标诊断模型, 并绘制其分布伪彩色图用于分析叶绿素含量空间分布特征。 研究结果表明, ①对25波段多光谱图像提取和反射率线性校准拟合模型决定系数均达到0.99以上。 分析校准前和校准后与ASD光谱仪测量反射率曲线, 镀膜型成像传感器获取玉米冠层反射光谱总体与ASD采集反射率体现的光谱特征一致, 且校正后数据比校正前与ASD光谱反射率的一致性得到了提升。 ②建立初次OTSU分割算法和基于霍夫圆变换识别的二次分割算法, 可以有效剔除玉米植株光谱图像中的土壤和培养盆背景噪声的干扰。 ③叶绿素含量指标PLSR诊断模型建模集R2c为0.545 1, 验证集R2v为0.472 6。 玉米作物冠层叶绿素分布可视化图可以直观反映叶绿素含量分布与生长动态情况。 通过对镀膜型光谱成像传感器应用方法的研究, 为后续玉米植株叶绿素动态快速检测奠定基础和提供技术支持。
镀膜型传感器 光谱成像 光谱校准 图像分割 玉米植株 Coating sensor Spectral imagery Spectral correction Image segmentation Maize plant 
光谱学与光谱分析
2020, 40(5): 1581
作者单位
摘要
中国农业大学现代精细农业系统集成研究教育部重点实验室, 北京 100083
农田变量施肥作业需要对农田土壤养分信息进行高精度的快速原位采集, 已有的设备不能满足精细农业田间测量的需要, 为此基于近红外漫反射测量开发了一款新型车载式原位土壤参数检测仪。 检测仪采用光照稳定性更好的卤钨光源代替太阳光进行土壤光谱检测, 以提高仪器对工作条件的适应性。 由7个敏感波长(1 070, 1 130, 1 245, 1 375, 1 450, 1 550, 1 680 nm)构成的土壤氮素测量极限学习机模型提高了仪器的测量实时性和精度。 检测仪由机械部分、 光学部分及控制部分组成。 机械部分为检测仪提供平台支撑, 光学部分为检测仪提供检测光源, 主要由卤钨光源、 光源转接法兰、 近红外导光光纤、 检测总成(含入射光出口端、 InGaAS光电探测器及7个敏感波长的滤光片)等组成, 控制部分实现对土壤测量信号的采集及处理。 检测仪工作时, 卤钨光源通过近红外导光光纤、 检测总成中的入射光出口端将检测光源传输到待测土壤表面, 通过测量土壤表面漫反射光的光谱反射率检测土壤养分参数。 在卤钨光源和近红外导光光纤连接处设计光源转接法兰, 最大限度的减小检测光源在传输过程中的损失。 漫反射光经过检测总成中的滤光片滤波后, 由相应的InGaAS光电探测器实现光电转换, 再经信号处理单元计算出各个敏感波长处的反射率。 检测仪采用灰度标准板进行光学标定测试, 测试结果显示, 检测仪在7个敏感波长处的反射率与MATRIX-I型傅里叶光谱分析仪反射率相关系数最高为0.997 8, 平均值为0.927 8, 表明检测仪有较高的检测精度。 为进一步对检测仪农田土壤养分的检测精度进行评估, 进行了检测仪的农田应用试验, 检测结果表明检测仪检测值与实验室标准检测方法检测值的相关系数都在0.90以上。 试验结果表明, 车载式原位土壤参数检测仪能够实现对农田土壤养分信息的快速原位高精度检测。
近红外光谱学 漫反射 土壤养分 车载式原位检测仪 Near infrared spectroscopy Diffuse reflection Soil nutrients Vehicle-mounted in-situ detector 
光谱学与光谱分析
2020, 40(9): 2856
作者单位
摘要
现代精细农业系统集成研究教育部重点实验室, 中国农业大学, 北京100083
采用灰色理论对冬枣叶片氮素含量和光谱反射率之间进行了灰度关联分析, 分析结果显示波长560, 678以及786 nm处的光谱反射率(G560, R678, NIR786)与冬枣叶片氮素含量之间的灰色关联度最高。 利用上述三个特征波段光谱反射率计算得到的植被指数共计9个。 进一步运用灰色系统理论分析了九种植被指数与叶片氮素含量的灰色关联度, 结果显示: 归一化植被指数(NDVI)、 绿色比值植被指数(GRVI)、 归一化差异绿度植被指数(NDGI)、 绿色归一化植被指数(GNDVI)和组合归一化植被指数(CNDVI)等5个指数与叶片氮素含量的灰色关联度较高。 利用3个特征波段的光谱反射率和5个关联度较高的植被指数, 分别采用最小二乘支持向量机(LS-SVM)以及GM(1, N)模型建立了冬枣叶片氮素含量预测模型。 结果表明, 采用特征波段光谱反射率(G560, R678, NIR786)建立的冬枣叶片氮素含量GM(1, N)模型的精度最高, 预测R2达0.928, 验证R2达0.896。
冬枣光谱 灰色关联度 植被指数 Spectra data of jujube Gray relation degree Vegetation index GM(1 GM(1 N) N) LS-SVM LS-SVM 
光谱学与光谱分析
2013, 33(11): 3083
作者单位
摘要
中国农业大学现代精细农业系统集成研究教育部重点实验室, 北京100083
通过温室基质栽培, 利用ASD光谱仪和傅里叶光谱分析仪测量了四种营养水平下温室番茄冠层和叶片的光谱反射曲线, 并检测了对应叶片的水分含量、 叶绿素含量和氮含量, 分析了不同营养水平下番茄冠层和叶片的反射光谱变化, 并对番茄叶片含水量的敏感波长以及冠层反射光谱的红边波长进行了研究。 结果表明: 温室番茄冠层反射光谱曲线在可见光550 nm左右均有叶绿素的强反射峰, 近红外区反射率高于可见光区。 在同一生长期, 随基质营养水平的提高, 番茄冠层反射率在可见光波段不断减小, 在近红外波段不断增大, 且红边波长位置出现“红移”现象。 利用530和760 nm特征波长得到的归一化颜色指标NDCI与叶片氮含量有较好相关性, R2为0.751 1。
番茄 光谱反射率 叶绿素检测 凯氏定氮 温室 Tomato Spectral reflectance Chlorophyll detection Kjeldahl nitrogen Green house 
光谱学与光谱分析
2010, 30(11): 3103
作者单位
摘要
1 中国农业大学,现代精细农业系统集成研究教育部重点实验室,北京 100083
2 Department of Agricultural Engineering,Agricultural University of Athens,Athens,Greece
采用CCD照相机加滤光片的方法,进行了基于多光谱图像分析的温室黄瓜叶片营养元素检测与诊断研究。 对近红外光波段的叶片图像分别采用遗传算法和分水岭算法进行阈值选取,对两种算法二值化的效果进行对比分析,结果表明采用分水岭方法分割的图像,边界清晰,噪音小,与原图像更接近,背景和叶片分离的效果更好。 NDVI与叶面积、叶片含氮量之间有明显的线性关系,R2分别为,0.8209和0.701 7。 GNDVI与叶面积、叶片的含氮量之间也有较高的线性关系,R2分别为,0.762 5和0.676 2。 RVI与叶面积之间有明显的线性相关关系,R2为0.857 7,但与叶片的含氮量之间则包含了非线性成分,R2为0.598 8。 以上结果表明,CCD照相机加滤光片可以作为一种作物含氮量信息的快速诊断方法。
多光谱 氮含量 黄瓜 图像处理 Spectral characteristic Nitrogen content NDVI NDVI Cucumber Image processing 
光谱学与光谱分析
2010, 30(1): 210

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!