作者单位
摘要
兰州交通大学电子与信息工程学院,甘肃兰州 730070
目前,红外与可见光图像融合算法依然存在着对复杂场景适用性低、融合图像细节纹理信息大量丢失、对比度与清晰度不高等问题,针对上述存在的问题,本文结合非下采样剪切波变换( Non-Subsampled Shearlet Transform, NSST)、残差网络( Residual Network, ResNet)与生成对抗网络(Generative Adversarial Network, GAN)提出一种 N-RGAN模型。通过 NSST变换将红外与可见光图像分解为高频子带和低频子带;对高频子带进行拼接并输入由残差模块改进过的生成器,并将源红外图像作为判决标准,以此提升网络融合性能与融合图像细节刻画以及目标凸显能力;对红外图像与可见光图像进行显著性特征提取,通过自适应加权对低频子带进行融合,提升图像对比度与清晰度;对高频子带的融合结果与低频子带的融合结果进行 NSST逆变换,从而得到红外与可见光图像的融合结果。通过与各类算法的融合结果进行对比,本文所提方法在峰值信噪比( Peak Signal to Noise Ratio, PSNR)、平均梯度( Average Gradient, AVG)、图像熵( Image Entropy, IE)、空间频率( Spatial Frequency, SF)、边缘强度( Edge Strength, ES)、图像清晰度( Image Clarity, IC)等多个客观指标上均有提高,可提升复杂场景下的红外与可见光图像融合效果,改善图像细节纹理信息损失严重的问题,同时提升图像对比度与清晰度。
图像融合 红外与可见光图像 显著性特征提取 非下采样剪切波变换 残差网络 生成对抗网络 image fusion, infrared and visible images, salient 
红外技术
2023, 45(9): 897
作者单位
摘要
兰州交通大学电子与信息工程学院, 甘肃 兰州 730070
针对近红外与彩色可见光图像融合后对比度低、 细节丢失和颜色失真等问题, 提出一种基于多尺度变换和自适应脉冲耦合神经网络(PCNN-pulse coupled neural network, PCNN)的红外与彩色可见光图像融合的新算法。 首先将彩色可见光图像转换到HSI(hue saturation intensity)空间, HSI色彩空间包含亮度、 色度和饱和度三个分量, 并且这三个分量互不相关, 因此利用这个特点可对三个分量分别进行处理。 将其亮度分量与近红外图像分别进行多尺度变换, 变换方法选择Tetrolet变换。 变换后分别得到低频和高频分量, 针对图像低频分量, 提出一种期望最大的低频分量融合规则; 针对图像高频分量, 采用高斯差分算子调节PCNN模型的阈值, 提出一种自适应的PCNN模型作为融合规则。 处理后的高低频分量经过Tetrolet逆变换得到的融合图像作为新的亮度图像。 然后将新的亮度图像和原始的色度和饱和度分量反向映射到RGB空间, 得到融合后的彩色图像。 为了解决融合带来的图像平滑化和原始图像光照不均的问题, 引入颜色与锐度校正机制(colour and sharpness correction, CSC)来提高融合图像的质量。 为了验证方法的有效性, 选取了5组分辨率为1 024×680近红外与彩色可见光图像进行试验, 并与当前高效的四种融合方法以及未进行颜色校正的本方法进行了对比。 实验结果表明, 同其他图像融合算法进行对比分析, 该方法在有无CSC颜色的情况下均能保留最多的细节和纹理, 可见度均大大提高, 同时本方法的结果在光照条件较弱的情况下具有更多的细节和纹理, 均具有更好的对比度和良好的色彩再现性。 在信息保留度、 颜色恢复、 图像对比度和结构相似性等客观指标上均具有较大优势。
彩色图像融合 Tetrolet变换 期望最大算法 自适应脉冲耦合神经网络 Color image fusion Tetrolet transform Expected maximum algorithm Adaptive Pulse Coupled Neural Network 
光谱学与光谱分析
2021, 41(7): 2023
作者单位
摘要
兰州交通大学电子与信息工程学院, 甘肃 兰州 730070
针对图像风格迁移时出现前后景边界模糊造成风格化图像主要目标模糊的问题,提出了目标边缘清晰化的图像风格迁移算法。通过将用于提取内容图像轮廓的深度抠图神经网络与风格迁移网络合并,形成透明遮罩约束风格迁移过程,凸显风格化图像中主要目标的轮廓;通过对迁移网络中最大池化层进行替换,保留图像的背景信息,细化风格化图像的整体结构;通过替换迁移网络中较大卷积核,减少网络模型参数,减少风格迁移计算量;通过对常规卷积层的归一化,实现相似风格迁移之间的参数共享,提升风格迁移速度。用VGG-19神经网络作为特征提取器对输入的内容图像和风格图像提取特征图,把输入图像到输出图像的变换约束在色彩空间局部仿射中,在输入图像RGB通道上合并目标遮罩,使得风格化图像的主要目标在遮罩约束中实现纹理合成。实验表明,与传统方法比较,该方法产生的迁移结果前后景边缘明显,内容结构保留较好,解决了风格化图像主要目标边缘模糊的问题。
图像处理 风格迁移 神经网络 抠图算法 深度学习 结构约束 
激光与光电子学进展
2021, 58(12): 1210021
作者单位
摘要
兰州交通大学电子与信息工程学院, 甘肃 兰州 730070
针对红外与可见光图像融合过程中出现的细节损失严重、视觉效果不佳等问题,提出了基于多尺度几何变换模型的融合方法。首先,采用改进的视觉显著性检测算法对红外与可见光图像进行显著性检测,并构建显著性矩阵;然后,对红外与可见光图像进行非下采样剪切波变换,得到相应的低频和高频子带,并采用显著性矩阵对低频子带进行自适应加权融合,同时采用简化的脉冲耦合神经网络并结合多方向拉普拉斯能量和对高频子带进行融合处理;最后,通过逆变换得到融合图像。实验结果表明,该方法能够有效提升融合图像的对比度并保留源图像的细节信息,融合图像具有良好的视觉效果,且多个客观评价指标均表现良好。
图像处理 图像融合 显著性检测 非下采样剪切波变换 脉冲耦合神经网络 
激光与光电子学进展
2020, 57(20): 201007
作者单位
摘要
兰州交通大学电子与信息工程学院, 甘肃兰州 730070
针对近红外与彩色可见光图像融合后出现的对比度降低、细节丢失、颜色失真等问题, 提出一种基于 Tetrolet变换和自适应脉冲耦合神经网络 PCNN(PCNN-Pulse Coupled Neural Network)的近红外与彩色可见光图像融合的新算法。首先将彩色可见光源图像转换到各个分量相对独立的 HSI空间(HSI-Hue Saturation Intensity), 将其亮度分量与近红外图像进行 Tetrolet分解, 对分解后得到的低频系数, 提出一种从给定不完备数据集中寻找潜在分布最大似然估计的期望最大算法融合规则;对分解后得到的高频系数, 采用一种 Sobel算子自动调节阈值的自适应 PCNN模型作为融合规则;处理后的高低频图像经 Tetrolet逆变换作为融合后的亮度图像, 提出一种饱和度分量自适应拉伸方法来解决图像饱和度下降的问题。处理后的各个分量反向映射到 RGB空间, 完成融合。将本文算法与多种高效融合算法进行对比分析, 实验表明, 本方法取得的图像, 细节清晰, 色彩对比度得到提升, 在图像饱和度、颜色恢复性能、结构相似性和对比度等客观评价指标上均具有明显的优势。
彩色图像融合 Tetrolet变换 期望最大算法 自适应脉冲耦合神经网络 color image fusion, Tetrolet transform, expectatio 
红外技术
2020, 42(3): 223
沈瑜 1,2,3党建武 1,2苟吉祥 4郭瑞 1,2[ ... ]李磊 1,2
作者单位
摘要
1 兰州交通大学电子与信息工程学院, 甘肃 兰州 730070
2 甘肃省人工智能与图形图像处理工程研究中心, 甘肃 兰州 730070
3 兰州交通大学光电技术与智能控制教育部重点实验室, 甘肃 兰州 730070
4 中国人民解放军68003部队, 甘肃 武威 733000
为了对雾霾天气下的图像进行去雾处理, 多幅图像去雾算法是常用的方法之一。 多幅图像去雾算法也有多种形式, 部分算法面临硬件实现困难、 获取途径受限或者可实施性弱等问题, 而且多幅图像比对处理时常常涉及图像配准, 造成算法的实时性差、 计算复杂度高等问题。 针对以上问题, 提出的算法为多幅图像去雾提供了新的思路, 基于双目传感器硬件架构能够同时捕获近红外和可见光图像, 将近红外传感器图像作为新的数据源, 近红外传感器能够在一定程度上穿透雾霾, 在雾天捕获可见光传感器无法捕获的图像细节, 而且硬件实现简单。 可见光图像的颜色信息较丰富, 近红外传感器图像对近处场景细节的描述能力较好, 捕获的图像稍加校正就能实现完全配准, 将近红外图像与可见光图像进行融合, 在去雾的同时, 可以将近红外传感器图像中的原始细节提取融合到彩色可见光传感器图像中, 得到边缘、 轮廓等细节信息更加丰富的去雾图像。 基于上述思路, 借助近红外传感器对边缘细节的描述能力和可见光传感器对颜色信息的反映能力, 提出了一种基于近红外与可见光双通道传感器图像融合的去雾算法。 首先, 将彩色可见光图像转换到HIS彩色空间, 分别得到亮度通道图像、 色调通道图像和饱和度通道图像。 先将其亮度通道图与近红外图像进行融合去雾处理。 采用非下采样Shearlet变换(NSST)进行分解, 对得到的高频系数进行双指数边缘平滑滤波器保边滤波处理, 对低频系数进行反锐化掩蔽处理, 通过融合规则和反向变换得到新的亮度通道图像。 然后, 在对可见光图像的色彩处理中, 建立饱和度图的退化模型, 采用暗原色原理对参数进行估计, 得到估计的饱和度图。 最后, 将新的亮度通道图像, 估计的饱和度图像和原色调图像反映射到RGB空间得到去雾图像。 为了验证新算法的有效性, 特选取四组雾天拍摄的真实近红外图像与可见光图像进行融合去雾处理, 将融合结果与其他两种去雾方法对于彩色可见光图像的去雾效果进行比较。 实验结果表明, 该算法在提高图像的边缘对比度和视觉清晰度上有较好的效果。 并提出将近红外传感器图像作为新的数据源, 采用双通道图像融合方法进行去雾处理, 为图像去雾提供的新的技术思路是可行的。 该算法的优势在于: 首先提出将图像融合方法与去雾算法相结合, 得到了新的去雾算法的思路。 将彩色可见光图像转换到HSI色彩空间, 将其亮度通道图与近红外图像采用非下采样Shearlet变换方法进行融合处理, 在去雾的同时, 可以将近红外传感器图像中的原始细节提取融合到彩色可见光传感器图像中, 使得去雾图像中的边缘、 轮廓等细节信息更加丰富。 其次, 提出了在图像去雾算法中采用新的数据源——近红外传感器图像, 从图像处理的角度, 近红外传感器能够在一定程度上穿透雾霾, 对于近处场景细节的描述能力较好, 而且硬件实现简单, 捕获的图像稍加校正就能实现完全配准, 为后续的融合去雾算法带来了便利, 为图像去雾提供了新的技术途径和路线。 再次, 采用的是多幅图像去雾算法, 该算法基于双目传感器获取图像, 可见光图像的颜色信息较丰富, 近红外图像对于近处场景细节的描述能力较好, 相对于单幅图像去雾算法, 有更好的效果。 最后, 将可见光传感器图像映射到其他色彩空间, 对于每个通道的图像根据其特征有针对性地进行处理。 可见光图像的亮度通道图和近红外图像的处理采用了图像融合和增强处理, 对于可见光图像饱和度通道的处理采用了图像复原算法, 可以从整体上提升去雾效果, 对细节特征有了进一步增强。 该算法为图像去雾提供了新的技术途径和路线。
双通道 传感器 近红外 去雾 融合 Dual channel Sensor Near-infrared Dehaze Fusion 
光谱学与光谱分析
2019, 39(5): 1420
作者单位
摘要
兰州交通大学电子与信息工程学院, 甘肃 兰州730070
提出了一种基于非下采样Contourlet变换(NSCT)的雾天图像清晰化算法,将雾天图像映射到HIS彩色空间,对亮度分量H、饱和度分量S分别处理。采用NSCT处理亮度分量H,对含有大多数能量的低频分量取反,再进行改进的单尺度Retinex算法处理,将再次取反后的图像与直接进行改进的单尺度Retinex算法处理的低频分量线性叠加;采用一种快速双边滤波器对包含图像大多数线性细节的高频分量进行处理;对处理后的高低频分量进行NSCT逆变换,得到处理后的亮度分量。对饱和度分量S进行颜色拉伸,实现颜色补偿;将处理后的各分量图像反向映射到RGB颜色空间,得到清晰化后的雾天图像。实验结果表明,该算法可以获得较好的浓雾图像细节及颜色保真度,与其他算法相比,图像的标准差、信息熵、峰值信噪比都有所提高。
图像处理 单尺度Retinex 非下采样Contourlet变换 HIS彩色空间 双边滤波器 
激光与光电子学进展
2018, 55(11): 111009
作者单位
摘要
1 浙江大学 光电科学与工程学院 现代光学仪器国家重点实验室, 杭州 310027
2 浙江科技学院 理学院, 杭州 310023
提出并实现了一种片式光阱传感单元.利用基片上的V型槽保证双光纤光阱的对准, 利用压电元件振动使微球与基片脱离, 实现了空气环境中对10 μm微球的捕获, 捕获后的微球位置稳定性达到0.12 μm.在此基础上, 设计制作了可预置少量微球的封闭微型腔, 实现了光阱传感结构的微型化和集成化, 解决了光阱中单微球的高效可重复起振难题, 为实现实用化的光阱传感器奠定了基础.
光纤光阱 悬浮微球 封闭微型腔 静态稳定性 重复起振 Fiber optical trap Levitating particle Sealed microcavity Static stability test Reproducible launching 
光子学报
2018, 47(2): 0206001
作者单位
摘要
兰州交通大学电子与信息工程学院, 甘肃 兰州 730070
为了对水下图像传感器获取的彩色图像进行清晰化处理,提出一种lαβ色彩空间的图像清晰化算法。将捕获到的彩色水下图像进行暗原色初步复原后,映射RGB空间至lαβ三通道进行清晰化处理。采用Tetrolet变换方法处理亮度通道l,对包含大部分的轮廓、边缘等线性细节的高频分量采用Bilateral滤波器处理,对包含大部分能量的低频分量进行非局部均匀滤波处理,然后将处理后的高、低频分量进行反向Tetrolet变换得到复原的亮度通道图;对αβ通道的色彩偏差进行空间均值颜色校正,得到复原的αβ通道图。将处理后的非彩色通道图和彩色通道图反向变换至RGB通道,更新透射率,得到清晰化的彩色水下图像。实验结果表明,该算法对彩色水下图像的复原效果较好,在图像色彩的提升和边缘细节的描述方面效果显著。
图像处理 水下图像 Tetrolet变换 lαβ色彩空间; 双边滤波器 
光学学报
2017, 37(9): 0910002
作者单位
摘要
1 兰州交通大学电子与信息工程学院, 甘肃 兰州730070
2 重庆工商大学机械工程学院, 重庆400067
针对目前红外与可见光图像融合速度慢、 融合结果对比度不高且易产生伪影的缺点, 提出一种基于Tetrolet变换的改进融合算法。 首先, 将可见光图像转换到lαβ颜色空间得到三个几乎不相关的彩色通道; 然后对其l分量和红外图像分别进行Tetrolet变换, 对于低通系数引入邻域能量及其接近度的融合规则。 而对Tetrolet系数采用伪随机傅里叶矩阵进行观测并加权融合其观测值; 接下来对融合后观测值采用CoSaMP优化算法迭代出融合后的Tetrolet系数, 并经Tetrolet重构得到融合后的灰度图像; 最后将灰度图像映射到RGB颜色空间获得最终的融合图像。 实验证明了本文算法的有效性。
红外图像 可见光图像 图像融合 Tetrolet变换 伪随机傅里叶矩阵 Infrared image Visible light image Image fusion Tetrolet transform Pseudo random Fourier matrix CoSaMP CoSaMP 
光谱学与光谱分析
2013, 33(6): 1506

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!