作者单位
摘要
1 中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033
2 中国科学院大学, 北京 100049
为了满足2 m望远镜系统中消旋K镜伺服系统的速度控制性能, 提出一种基于控制律参数自适应的自抗扰控制新方法。首先, 基于速度回路被控对象, 设计了二阶线性扩张状态观测器, 以实现对扰动的实时观测; 然后, 为了提高速度环动态和稳态性能, 采用回归分析方法, 设计了控制律参数基于输入速度变化而自适应调整的比例控制器; 最后, 搭建了消旋K镜伺服控制实验系统, 在速度阶跃信号激励下开展实验研究。结果显示: 与传统PI和自抗扰控制器相比, 系统以0.001 (°)/s速度运行时, 稳定时间从7.3 s、3.2 s减少至0.9 s; 以10 (°)/s速度运行时, 系统超调量从8%、62%降低至无超调; 在中低频段的扰动抑制能力最大提高了23 dB, 性能得到了提高, 可满足K镜伺服系统高精度的速度控制性能要求。
望远镜K镜 速度控制 自抗扰控制 自适应控制器律参数 K mirror of telescope speed control active disturbance rejection-controller adaptive control law parameter 
红外与激光工程
2018, 47(7): 0718006
作者单位
摘要
1 中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033
2 中国科学院大学, 北京 100049
针对某2 m望远镜消旋K镜转台, 提出了一种基于Hankel矩阵奇异值分解的特征系统实现算法对系统的参数和阶次进行辨识。首先, 以正弦扫描信号激励转台并同步采集位置反馈信息, 利用谱分析法对测试数据进行分析, 得到了系统的频率特性曲线; 其次, 对系统的Hankel矩阵进行奇异值分解, 得到了K镜转台的结构模型; 最后, 采用特征系统实现算法对Hankel矩阵进行辨识, 得到了K镜转台的参数模型。实验结果显示: K镜转台相对均衡的最小阶阶次为6阶, 在系统的中低频段获得幅度±0.31 dB和相位±0.87°的辨识精度, 相对于参数递阶辨识方法, 分别提高了50.7%和23%。结果表明: 该方法能够确定一个与系统外特性“等价”的相对均衡的最小阶状态空间模型, 在辨识系统阶次和参数估计方面具有较好的可行性和实用性。
K镜转台 系统辨识 奇异值分解 特征系统实现算法 Hankel矩阵 K mirror turntable system identification SVD ERA Hankel matrix 
红外与激光工程
2018, 47(3): 0318001
作者单位
摘要
中国科学院 长春光学精密机械与物理研究所,吉林 长春 130033
由于大型望远镜转台轴系对测角精度要求较高,本文研究了测角数据系统的误差修正技术。分析了测角数据误差产生的原因,对测角元件误差、安装误差、被测轴系误差进行了讨论,指出轴系测角分系统的误差规律符合谐波方程,故提出采用谐波方程式来表达误差规律。针对工程应用,建立了基于傅里叶级数的简化谐波方程误差公式,用谐波方程算法和多项式拟合算法对系统误差进行修正。在一个望远镜垂直轴转台进行了试验验证,结果显示测角精度峰值由原来的3.81″提高到了1.06″。实验表明,基于傅里叶级数的修正算法,较好地符合误差分布规律;采用系统误差修正技术,可以对系统综合误差统一修正,能够有效提高系统测角精度。
望远镜 测角系统 编码器 测角精度 误差修正 telescope angle measurement system encoder angle measurement precision error correction 
光学 精密工程
2015, 23(9): 2446
作者单位
摘要
中国科学院 长春光学精密机械与物理研究所,吉林 长春 130033
研制了反射式光电编码器。介绍了光栅自成像原理,完善了高密度基准光栅的制作工艺,研制完成了32768刻线对光栅和高集成度光电读数头,最后制成了反射式高精度光电编码器。该编码器采用多参考点编码方式,加快和简化了确定基准零点的操作,初始化转动最大5.625°即可确定基准零点。采用自准直光管和23面棱体检测了编码器的测角精度,其单边读数头均方根误差为1.11″,对径双读数头均方根误差为0.75″;反射式读数使光栅与读数头间隙提高10倍达到2.0 mm。结果表明,研制成功的高精度反射式光电编码器结构简单,反射式读数头光电信号质量较高。该编码器为高精度测角应用提供了一种新的解决方案。
高精度编码器 反射式编码器 光栅自成像 高密度基准光栅 high precision encoder reflection encoder grating self-imaging high-density reference grating 
光学 精密工程
2013, 21(12): 3066
作者单位
摘要
中国科学院 长春光学精密机械与物理研究所,吉林 长春 130033
高分辨力光电编码器通常利用码盘精码两路正交的正、余弦信号,通过细分达到高分辨力。为使细分技术更加完善,本文对细分误差进行了专题研究。分别对信号直流分量误差、幅值误差、相位误差、谐波分量误差、噪声误差和量化误差等进行了数理分析,通过对细分误差的特性分析,得出了误差规律及其计算公式,形成了比较完整的光电编码器细分误差及精度分析的数理结果。结果表明,一般情况下细分精度在1.5%左右。文章指出,利用码盘精码通过细分提高分辨力,应在码盘选择、轴系设计、信号提取、电路设计、工艺调试等各个环节充分考虑细分误差的影响。研究结果可用于在产品设计时,合理进行误差分析与分配,预估产品的精度,为减小设计误差提供参考。
光电编码器 轴角编码器 细分误差 精度分析 photoelectric encoder angle encoder subdivision error precision analysis 
光学 精密工程
2012, 20(2): 379
作者单位
摘要
中国科学院 长春光学精密机械与物理研究所,吉林 长春 130033
提出了减小光电编码器电路部分空间,缩小其结构尺寸的方法,并对编码器的电路处理进行了研究。介绍了光电编码器的基本原理、光电信号特点和信号处理的要求,分析了传统电路处理方案的特点,说明了基于放大器和比较器的传统方案是造成电路结构设计体积较大的原因。为改变传统方案,提出了用AD直通处理和分时驱动光电信号采集技术来代替传统硬件设置从而有效压缩电路部分空间的方法。介绍了编码器高集成度电路设计的实现原理,并设计了一种16位小型编码器,其电路板面积为415 mm2,,编码器体积仅为Ф25 mm×16 mm。设计实验表明,基于SOC单片机的高集成度光电编码器电路设计技术使用元器件少,电路简单、集成度高,可有效压缩传感器电路部分的空间。
光电编码器 电路设计 AD直通处理 分时信号采集 photoelectric encoder circuit design AD through processing Time sharing signal acquisition 
光学 精密工程
2011, 19(5): 1088
作者单位
摘要
1 中国科学院 长春光学精密机械与物理研究所,吉林 长春 130033
2 中国科学院 研究生院,北京100039
为了实现高精度、高可靠性、绝对式光电编码器的小型化,研究了编码器的编码方式和读数头的结构。介绍了编码器码盘所采用的八象限矩阵编码(即八矩阵码)原理,对比传统四象限矩阵码,八矩阵编码的优点在于它仅需两圈就可以实现10位自然二进制编码:码盘第一圈四路信号实现格雷编码的高三位,第二圈八路信号实现格雷编码的低七位;再经格雷编码与自然二进制的译码关系,得到10位自然二进制码。运用错位移相的方法设计了狭缝的精码窗口,获得了圆光栅莫尔条纹;同时,采用单头读数,减少了发光元器件(光源)的数量。最后,介绍了信号提取方法。实验结果表明,设计的八矩阵编码器实现了超小体积为Φ25 mm×16 mm,重量<28 g,分辨率经过电子细分达到了16位,精度(1σ)优于30″。极高的可靠性可保证该编码器在极其苛刻条件下长期正常工作,适于在航空航天和**领域应用。
光电编码器 绝对式编码器 小型化 八矩阵 错位移相 optical encoder absolute encoder miniaturization eight-matrix phase compensation 
光学 精密工程
2010, 18(2): 326
作者单位
摘要
1 中国科学院 长春光学精密机械与物理研究所,吉林 长春 130033
2 中国科学院 研究生院,北京 100039
为了改进编码器误差检测方法,提高检测效率,基于对光电轴角编码器误差检测现状的分析,设计了一种编码器误差自动检测系统。介绍了自动检测系统的工作原理,系统的硬件设计和软件设计。利用运动和全闭环控制技术,以24位高精度增量式光电轴角编码器为反馈元件,该自动检测系统可自动完成对编码器测试点的定位、数据获取和误差数据分析,定位精度为2″,可以检测18位以下各类光电轴角编码器的误差,检测效率是标准检测装置的6倍。该实验结果验证了方案的可行性。
光电轴角编码器 误差 运动控制 自动检测 Optical encoder error motion control automatic detection 
中国光学
2009, 2(2): 134

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!