作者单位
摘要
1 中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033
2 中航凯迈(上海)红外科技有限公司, 上海 201306
3 中国人民解放军32031部队, 河南 开封 475000
为了实现可见光波段多路不同波长激光的周期性闭环校正,设计了一种具有光束指向和位置偏差独立监测与调节的激光合束系统。首先,根据系统的应用需求,提出了合束系统的设计指标与整体合束方案。然后,在合束方案的基础上,建立了合束系统的光束控制模型,并通过数值仿真得到了合束系统光束控制的解算方法。闭环合束系统通过光束指向和位置监测装置分别实现合束激光指向偏差与位置偏差的独立监测,并根据监测结果进行光束调节装置控制量的解算;进而通过两维摆镜和一维平移台分别实现光束指向和位置偏差的独立高效调节。最后,采用两路不同波长的激光束,配合光束监测与调节装置,搭建了闭环合束模拟实验平台,对周期性闭环合束系统的合束效果进行了验证。实验结果表明:在长时间的工作过程中,两路激光均实现了与基准光路的精密合束,合束指向精度优于±7 μrad,位置精度优于±0.84 mm。本研究所组建的激光合束系统不仅具有合束精度高、校正速度快、光路扩展性强的优势,而且可实现激光束的周期性闭环校正,能够有效保证合束激光的长期工作稳定性。
激光合束 光束监测 光束控制 指向偏差 位置偏差 laser beam combining beam monitoring beam control beam direction deviation beam positional deviation 
中国光学
2024, 17(2): 342
作者单位
摘要
1 中国科学院 长春光学精密机械与物理研究所,吉林 长春 130033
2 哈尔滨工业大学 可调谐激光技术国家级重点实验室,黑龙江 哈尔滨 150001
针对星上激光通信终端二维转台的精确控制,设计了实时测量转台旋转角度的专用型光电角度编码器。根据星载激光通信终端所需测角系统的设计指标,分别对光电角度编码器的码盘、指示光栅及光电信号的提取方法进行了设计和选择。其中,格林二进制绝对式编码结合高质量的电子学细分,实现了编码器24位的绝对角度测量; 四象限矩阵编码方式有效地减小了码盘的径向尺寸; 分体读数头式指示光栅较整周玻璃盘大幅度压缩了体积和重量。在室温条件下对安装在星载激光通信终端上的光电角度编码器进行了测角精度检测。结果表明: 该测角系统的角度测量精度约为0.7″(优于1.0″)。激光通信终端设备的在轨稳定运行及捕获、跟踪和通信功能的正常发挥,进一步验证了所设计的光电角度编码器测角精度高、抗辐射能力强、工作可靠性高,满足星载激光通信终端设备的应用要求。
激光通信 光电角度编码器 绝对式角度编码器 角度测量 测量精度 laser communication optical angle encoder absolute angle encoder angle measurement measurement precision 
光学 精密工程
2016, 24(10): 2424
作者单位
摘要
1 中国科学院 长春光学精密机械与物理研究所, 吉林 长春 130033
2 中国科学院大学, 北京 100049
设计了一款紧凑型刚性支撑式快速控制反射镜(FSM),以适应机载运动平台的高振动、大冲击和高低温等恶劣工作环境。考虑机载FSM的工作需求, 分别对FSM的支撑轴系、驱动元件和测角元件等进行设计与选择。针对刚性支撑轴系设计了轴系间隙调整机构, 提高了FSM系统的轴系精度, 进一步增大了FSM的承载能力; 针对机载FSM研制了专用小尺寸微位移测量传感器, 通过将4个传感器非轴线对称布置, 并利用二次差分的方式实现反射镜位置的实时监测, 进一步减小了FSM系统的体积, 提高了它的测量精度。最后, 对机载FSM的控制带宽和指向精度进行了实验检测。结果显示: 所设计的FSM系统控制带宽约为110 Hz, 方位指向误差不超过3.4″, 俯仰指向误差不超过3.8″, 表明所设计的FSM控制系统稳定、响应速度快、指向精度高, 满足机载运动平台的应用要求。
快速控制反射镜 刚性支撑 差分测量 控制带宽 指向精度 Fast Steering Mirror(FSM) rigid support difference measurement control bandwidth pointing precision 
光学 精密工程
2016, 24(1): 126
作者单位
摘要
1 中国科学院 长春光学精密机械与物理研究所,吉林 长春 130033
2 中国科学院大学,北京100049
对双光束波长合束精度进行了研究。用镀有特制光学薄膜的滤光片对波长为532和515 nm的两束激光进行合束,并对合束精度进行检测。基于此系统,建立了对应理论模型,并对合束及检测的误差来源和大小进行全面分析。两光束指向稳定性均为50 μrad时,合束精度理论值为14.69″,指向稳定性所占比例为99.26%,系统对质心定位等不稳定因素(误差变化<3倍)抗性极好,精度变化<2.4‰; 指向稳定性提高到23.51 μrad时,合束精度理论值为7.09″,指向稳定性所占比例为96.77%,系统仍有较高抗干扰能力,精度变化<1%。分析表明,影响近场小功率合束精度的因素有激光指向稳定性、机械调节和质心定位误差,其中激光指向稳定性是主要因素。通过调节各因素的比例,可对合束的抗干扰能力进行控制。
双光束合束 波长合束 精度检测 误差分析 double beam combination wavelength multiplexing accuracy testing error analysis 
中国光学
2014, 7(5): 801
作者单位
摘要
1 中国科学院 长春光学精密机械与物理研究所,吉林 长春 130033
2 中国科学院大学,北京 100049
为了适应车载平台恶劣的工作环境,设计了一种大口径刚性支撑式快速反射镜。针对车载跟瞄转台对快速反射镜的应用需求选择音圈电机为驱动器,并分别设计了快速反射镜系统的平面反射镜、驱动器、支撑基座、测量元件和机械结构。然后, 应用有限元分析方法,有效地实现了平面反射镜的轻量化及支撑基座的模态分析。快速反射镜通过球型铰链实现其运动部分与不动部分的连接,主要载荷通过铰链由支撑基座间接承载,从而有效地保障了大口径快速反射镜的承载能力和环境适应性。最后,组建了伺服控制系统,并对控制带宽和指向精度进行了测试。结果显示: 所设计的车载大口径快速反射镜带宽达67 Hz,方位指向精度为1.0″、俯仰指向精度为1.1″,表明控制系统稳定实用,满足车载平台的应用要求。
快速反射镜 刚性支撑 控制带宽 指向精度 Fast Steering Mirror(FSM) rigid support control bandwidth pointing precision 
光学 精密工程
2014, 22(1): 117
作者单位
摘要
中国科学院 长春光学精密机械与物理研究所, 吉林 长春 130033
为了准确评估车载桅杆型光电探测系统在设计阶段的效能, 提出了将与探测系统直接相关的光电分系统、桅杆分系统、载车分系统进行参数综合化来分析系统作战效能的方法。引入模糊综合评估方法, 以专家打分为主要评估手段对车载高架式光电探测系统进行基于总体的作战效能评估研究。将该评估方法应用于某车载高架式光电探测系统, 对其搜索跟踪与引导能力、系统可用能力、系统生存能力进行了量化评估。上述三项指标的效能评估值分别为79、85和87, 而系统总体效能值为82, 这与系统的实际效能基本一致, 证明了本方法具有一定的科学性, 可推广至其他光电类系统的作战效能分析。
光电探测系统 光电桅杆 作战效能评估 模糊综合评估 optical-electronic detection system optic-electronic mast operational efficiency evaluation fuzzy synthetic evaluation 
光学 精密工程
2013, 21(1): 77
作者单位
摘要
1 长春理工大学 光电工程学院, 吉林 长春 130022
2 中国科学院 长春光学精密机械与物理研究所, 吉林 长春 130033
为了使快速控制反射镜(FSM)能在车载、舰载等运动环境下稳定工作, 并具有很高的控制精度, 研制了一套高精度角位移测量装置, 该装置通过精确地提供反射镜摆角信息作为系统的反馈信号来实现伺服闭环控制。针对传统快速控制反射镜位置信息反馈传感器的精度低以及不适于动载环境等缺点, 采用田字裂相信号提取方法设计了基于莫尔条纹计数测量原理的精密光栅, 并通过计算机进行仿真分析设计了具有抗干扰能力和耐高低温变化的绝对零位信号, 其对比度达0.25。对信号处理电路进行高度集成, 实现了小型化。实验结果表明, 反射镜角位移测量装置测量的反射镜角分辨率为0.15″, 测角精度优于0.4″, 完全能满足机动式条件下, 高能激光发射系统对FSM控制精度的要求。
车载激光** 快速控制反射镜 光栅 光束控制 角位移测量 vehicle-borne laser weapon Fast Steering Mirror (FSM) grating beam control angle displacement measurement 
光学 精密工程
2012, 20(7): 1517
作者单位
摘要
中国科学院长春光学精密机械与物理研究所,长春 130033
为定量分析大尺寸望远镜自身重力对主镜镜面变形造成的影响,采用有限元的手段以非线性分析方法的 ABAQUS软件为研究工具对某大尺寸望远镜主镜组件进行了精确有限元分析。在分析过程中将罚函数的摩擦形式引入至主镜组件的摩擦接触中,分别对组件的球头接触、芯轴接触进行了建模,完成了对于组件 Y向与 Z向的各部分应变分析。分析表明该主镜组件因自身重力作用造成的面形变化非常小, RMS方面的 Y向与 Z向面形变形分别为 16 nm和 13 nm,而主镜绕 X轴倾斜量在 Y向和 Z向分别为 0.5″和 0.02″,完全满足使用条件。该分析为该望远镜的后续研制提供了参考。
主镜设计 环境适应性 有限元分析 应变分析 main mirror design environment adaptability finite element analysis emergency analysis 
光电工程
2012, 39(5): 133
作者单位
摘要
中国科学院 长春光学精密机械与物理研究所 长春 130033
紧凑型高精度高可靠性多路激光合束与扩束结构的设计在工程应用中具有非常大的价值。在此背景下创造性地提出一种对基准平台进行分体式铸造,将短、中、长三波段多个激光器安装于长宽高分别为 1 280 mm、990 mm、 815 mm的舱内小空间及具备空间位置调整的紧凑型结构设计方案。对某型激光合扩束主体结构进行了设计,同时对部分重要部件进行了有限元静力学分析。在该平台中各路激光器沿激光出射方向的角度调整量均大于 ±30′,平台总质量为 600 kg。该过渡基准平台系统在承载转台负载的前提下,其受力最大应变量为 0.005 mm。这表明该结构完全能够满足这种激光器的小空间合扩束及调整要求,该方法可以推广到其他光路合束结构设计中。
激光合束 激光扩束 分体铸造 结构设计 laser combining beam laser extending beam fission foundry structure design 
光电工程
2012, 39(4): 73
作者单位
摘要
1 中国科学院长春光学精密机械与物理研究所,长春 130033
2 中国科学院研究生院,北京 100049
为了精确控制 FSM系统中平面反射镜的偏转角度,研制了专用型光栅测微仪对其进行位置测量,以实现系统的闭环控制。在明确了 FSM系统对测微仪应用需求的基础上,根据其技术原理,对光栅测微仪的小型滑轨、标尺光栅图案、指示光栅图案、绝对零位编码、指示光栅移相以及接触探头分别进行了设计与选择。经精密加工、装配、调试后,所得光栅测微仪的测量范围为 ±2.5 mm,响应频率为 1 000 Hz,全行程测量精度优于 2 μm,测量分辨力优于 0.06 μm,并能提供绝对零点位置。工程应用实践证明:该光栅测微仪具有高精度、高分辨力、高可靠性的特点,满足 FSM系统的使用要求。
快速反射镜 光栅 微位移测量 增量式 fast-steering mirror grating measuring for micro-length increment 
光电工程
2011, 38(10): 115

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!