作者单位
摘要
中国原子能科学研究院核物理研究所,北京 102413
为了增强相对论飞秒激光与固体靶相互作用下太赫兹波的产生,提出了前端锥形开口的纳米丝靶结构,并通过胞中粒子法(Particle-In-Cell)数值模拟,研究了该结构对太赫兹波产生的影响,还与普通结构的纳米丝靶所产生的太赫兹波结果进行了对比。结果显示,前端锥形开口的纳米丝靶结构能够明显增强太赫兹波的产生,在探测点位置得到了比普通纳米丝靶中的太赫兹波电场强3倍的结果。最后详细分析了不同靶型结构影响太赫兹波产生的物理因素,发现不同靶型结构通过影响入射激光的吸收与反射,进而影响靶后超热电子的能量与数目。上述研究结果将有助于推动强场太赫兹波领域的发展,为实验研究提供方案和数据支撑。
激光技术 太赫兹波 微结构靶 飞秒激光 胞中粒子法数值模拟 激光等离子体 
中国激光
2022, 49(6): 0614002
作者单位
摘要
中国原子能科学研究院 核物理研究所,北京 102413
为充分利用氟化氪(KrF)准分子激光放大器的长泵浦时间,探索提高激光输出效率的方法,开展紫外超短脉冲在KrF准分子激光器中多脉冲放大和组束的实验研究。采用双脉冲放大方案研究激光脉冲时间间隔对输出能量的影响,确定延时时间,提高脉冲总能量并有效抑制自发辐射(ASE)。实现了单次放大4个紫外超短脉冲,获得了近4倍于单脉冲放大的输出能量。并探索紫外超短激光脉冲的组束技术,成功应用光学角多路的方法将两个亚皮秒的紫外激光脉冲进行精确组束。
紫外超短激光 准分子激光 氟化氪激光 激光放大 脉冲组束 ultraviolet short pulse laser excimer laser KrF laser beam amplification beam combination 
强激光与粒子束
2020, 32(1): 011014
作者单位
摘要
中国原子能科学研究院, 北京 102413
激光驱动气库材料可用于实现准等熵压缩,为了预估样品靶前表面的峰值压力及分析样品靶前表面压力随时间变化曲线,建立了一个简化的理论模型用于描述这一物理过程。激光入射在气库材料上产生冲击波,冲击波到达气库材料背表面卸载使其成为等离子体,进而在真空中自由膨胀。在膨胀的过程中,等离子体密度、温度不断降低,并堆积在样品前端使样品表面的温度、压力缓慢上升,实现准等熵压缩。将气库材料近似为多方气体,对其进行分层处理,求解得到每一层等离子体自由膨胀的解析解,进而编写程序计算多层等离子体堆积在样品前端压力随时间变化曲线。与实验上获得样品自由面粒子速度后用背积分方法获得的样品前端压力随时间变化曲线进行对比,较为吻合,表明这种模型可以用于预估样品前端压力。
激光 准等熵压缩 冲击波卸载 自由膨胀 自相似变换 多方气体 laser quasi-isentropic reservoir free expansion self-similar transformation poly-tropic gas 
强激光与粒子束
2014, 26(7): 072007
何以广 1,2,*王钊 2梁晶 2高爽 2[ ... ]汤秀章 2
作者单位
摘要
1 清华大学 工程物理系, 北京 100084
2 中国原子能科学研究院 高功率准分子激光实验室, 北京 102413
利用经典分子动力学和第一性原理分子动力学,研究了氦在高压下的熔化曲线、状态方程和非金属-金属转变。得到了氦在温度小于4.5 eV、 密度0.3~5.0 g/cm3范围内的状态方程,并把氦的熔化曲线的压强范围拓展到了50 GPa。氦的能隙宽度曲线表明,温度大大降低了氦的金属化密度。
状态方程 分子动力学 非金属-金属转变 熔化曲线 equation of state molecular dynamics nonmetal-metal transition melting line 
强激光与粒子束
2011, 23(6): 1649
作者单位
摘要
中国原子能科学研究院, 北京 102413
为了诊断测量激光驱动冲击波,研制了具有空间分辨力的成像型速度干涉仪。该干涉仪主要包括输入部分、像传递部分及干涉部分,探测光采用波长为532 nm的单纵模激光。 在靶位放置一分线板,经过测量,其空间分辨力小于10 μm。基于天光KrF准分子激光系统的参数,设计并自制含有烧蚀层的单台阶金属靶,利用成像型速度干涉仪测量到了金属铝靶内的冲击波速度。
速度干涉仪 空间分辨 单台阶靶 冲击波 velocity interferometer system for any reflector ( spatial resolutions single-step target shockwave 
强激光与粒子束
2011, 23(3): 661

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!