作者单位
摘要
教育部核物理与离子束应用重点实验室 复旦大学现代物理研究所上海 200433
中子皮是不稳定原子核中存在的一种奇特结构,在核反应过程中会产生各种效应。不同理论模型研究发现,中子皮厚度会影响核-核碰撞中的中子擦去截面、轻粒子产额比、重碎片产额比、光子产生截面等物理量,也与原子核的集团结构、表面宽度、温度等存在密切关系。在高能重离子碰撞中研究发现,中子皮同样存在明确的效应。实验上,基于放射性核束装置可以产生具有中子皮结构的不稳定核,通过测量其与稳定核发生反应后与中子皮敏感的观测量,能提取或确定中子皮厚度。结合核理论模型,可以进一步约束非对称核物质的状态方程及核天体的相关性质。
中子皮 放射性核束 非对称核物质的状态方程 Neutron skin Radioactive nuclear beam Equation of state of asymmetric nuclear matter 
核技术
2023, 46(8): 080016
作者单位
摘要
1 华北科技学院,北京 101601
2 中煤科工集团沈阳研究院有限公司,抚顺 113122
我国煤层渗透率低、瓦斯压力高、含量大,原始煤层瓦斯抽采困难。为提高煤层瓦斯抽采率、缩短预抽时间,必须实施人工增透;而众多压裂增透技术中,超临界CO2压裂兼具压裂增透和驱替置换的双重瓦斯强化抽采作用,是当前低渗透煤层压裂改造方法的一个研究热点。为探索高压脉冲放电激励CO2(L-CO2)压裂增透技术压裂机理,采用自主开发的高压脉冲放电激励超临界CO2试验装置,对基于高压脉冲放电激励液态CO2相变过程的电、热、力多场耦合的复杂过程进行定量研究,确定高压脉冲放电能量对液态CO2转化超临界态压力动态响应规律。通过Span &Wagner CO2状态方程,对液态CO2→超临界CO2气化需要的能量进行了分析与计算,得出在反应釜内放电能量达到20 kJ、40 kJ、50 kJ工况下超临界CO2压力将分别达到11 MPa、18 MPa、26 MPa。通过改变起爆电压等级分别为1500 V,2000 V,2500 V实现三个等级放电能量实验,放电能量分别为20 kJ、40 kJ、50 kJ三种工况下对反应釜内超临界CO2压力动态响应压力进行监测,获得压力与时间关系曲线,分析了压力曲线变化规律。研究表明:不同放电能量下,反应釜内液态CO2气化程度是不同的,随着放电能量的增加反应釜内超临界CO2压力随之增大。研究成果对实现高压放电激励超临界CO2持续压裂煤层增透技术应用提供了一定的借鉴意义。
超临界CO2 增透 状态方程 压力响应 爆炸能量 supercritical carbon dioxide permeability improvement equation of state pressure response explosive energy 
爆破
2022, 39(3): 0139
Author Affiliations
Abstract
1 School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
2 Institute of Laser Engineering, Osaka University, Suita, Osaka 565-0871, Japan
3 Institute of Radiation Physics, Helmholtz Zentrum Dresden Rossendorf, 01328Dresden, Germany
Thanks to a rapid progress of high-power lasers since the birth of laser by T. H. Maiman in 1960, intense lasers have been developed mainly for studying the scientific feasibility of laser fusion. Inertial confinement fusion with an intense laser has attracted attention as a new future energy source after two oil crises in the 1970s and 1980s. From the beginning, the most challenging physics is known to be the hydrodynamic instability to realize the spherical implosion to achieve more than 1000 times the solid density. Many studies have been performed theoretically and experimentally on the hydrodynamic instability and resultant turbulent mixing of compressible fluids. During such activities in the laboratory, the explosion of supernova SN1987A was observed in the sky on 23 February 1987. The X-ray satellites have revealed that the hydrodynamic instability is a key issue to understand the physics of supernova explosion. After collaboration between laser plasma researchers and astrophysicists, the laboratory astrophysics with intense lasers was proposed and promoted around the end of the 1990s. The original subject was mainly related to hydrodynamic instabilities. However, after two decades of laboratory astrophysics research, we can now find a diversity of research topics. It has been demonstrated theoretically and experimentally that a variety of nonlinear physics of collisionless plasmas can be studied in laser ablation plasmas in the last decade. In the present paper, we shed light on the recent 10 topics studied intensively in laboratory experiments. A brief review is given by citing recent papers. Then, modeling cosmic-ray acceleration with lasers is reviewed in a following session as a special topic to be the future main topic in laboratory astrophysics research.
collisionless shock compressible hydrodynamics cosmic rays equation of state high-energy-density plasmas intense laser magnetic turbulence opacity experiment particle accelerations relativistic plasmas turbulent mixing wakefield acceleration Weibel instability 
High Power Laser Science and Engineering
2021, 9(4): 04000e49
作者单位
摘要
北京应用物理与计算数学研究所,北京 100094
氢是自然界最丰富的元素,是天体物理和惯性约束聚变(ICF)研究的重要对象。简要综述了国内外氢及氘宽区物态方程研究进展,特别评述了OMEGA激光装置上的最新冲击压缩 实验和理论模型的对比分析情况。在以往数据分析评估基础上,利用改进的化学自由能模型、第一原理数值模拟结果及多参数物态方程模型,构建了氢的宽区物态方程,适用温度、密度范围分别为20~108 K,10−7~2000 g/cm3。与已有多类实验如冲击压缩实验、静高压等温线实验、声速等实验结果对比表明,新构建的氢宽区物态方程具有较高的置信度,为天体物理、惯性约束聚变、国际热核实验堆等工程物理设计提供高精度的支撑数据。氢宽区物态方程的构建及验证方法亦可适用于其同位素氘,该方法构建的氘宽区物态方程与2019年最新发表的主雨贡纽、二次冲击雨贡纽数据的吻合程度明显优于当前国外模型。指出了未来研究需要关注的状态区域。
宽区物态方程 氢及同位素氘 雨贡纽曲线 声速 室温等温线 冷压曲线 wide-range equation of state hydrogen and isotope deuterium Hugoniot sound velocity room-temperature isotherm cold pressure curve 
强激光与粒子束
2021, 33(1): 012003
Author Affiliations
Abstract
1 IPPLM Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland
2 CNRS, CEA, CELIA, Universite de Bordeaux, Talence, France
3 Donostia International Physics Center (DIPC), Donostia-San Sebastian, Basque Country, Spain
4 Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milano, Italy
5 Fisika Aplikatua 1 Saila, Ingeniaritza Eskola, University of the Basque Country (UPV/EHU), Basque Country, Spain & Centro de Física de Materiales (CSIC-UPV/EHU), Donostia/San Sebastian, Basque Country, Spain
6 Department of Plasma Physics, National Research Nuclear University MEPhI, Moscow, Russia
7 Joint Institute for High Temperature RAS, Moscow, Russia
8 GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
9 Dipartimento di Ingegneria Industriale, Università degli studi di Roma “Tor Vergata”, Roma, Italy
10 Institute for Microelectronics and Microsystems - CNR, Roma, Italy
11 IGRRE - Joint Institute for High Temperatures RAS, Makhachkala, Russia
12 Department of Physics “G. Occhialini”, University of Milano-Bicocca, Milano, Italy
In this work we present experimental results on the behavior of diamond at megabar pressure. The experiment was performed using the PHELIX facility at GSI in Germany to launch a planar shock into solid multi-layered diamond samples. The target design allows shock velocity in diamond and in two metal layers to be measured as well as the free surface velocity after shock breakout. As diagnostics, we used two velocity interferometry systems for any reflector (VISARs). Our measurements show that for the pressures obtained in diamond (between 3 and 9 Mbar), the propagation of the shock induces a reflecting state of the material. Finally, the experimental results are compared with hydrodynamical simulations in which we used different equations of state, showing compatibility with dedicated SESAME tables for diamond.
carbon dynamic compression equation of state shock wave VISAR 
High Power Laser Science and Engineering
2021, 9(1): 010000e3
Author Affiliations
Abstract
1 湖北第二师范学院物理与机电工程学院, 武汉 430205
2 北京大学物理学院, 北京 100871
Neutron stars are extremely compact objects with an average density higher than that of the saturate nuclear matter. Exploring the nature of such objects can help us to understand physics under extreme conditions, especially the gravitational and strong forces. This paper introduces the concepts of pulsars and neutron stars, as well as various models of the interior structure of the latter. More importantly, we shall show how to test such models observationally by determining various properties related to the equation of state, such us the maximum mass and tidal deformability. Detecting further merger events of binary neutron stars and/or neutron star-black hole binaries will certainly help to unveil the inner structure of neutron stars.
中子星 脉冲星 引力波 致密物态 伽马射线暴 neutron star pulsar gravitational wave equation of state of dense matter gamma-ray burst 
Journal of Semiconductors
2019, 48(9):
Author Affiliations
Abstract
德国马克思普朗克引力物理研究所, 波茨坦 14476
The direct detection of the inspiraling gravitational wave signal from the binary neutron star merger GW170817, by LIGO, together with the detection of its electromagnetic counterparts GRB170817AandAT2017gfo, announced the birth of the multi-messenger astronomy era. Numerical relativity, i.e. solving Einstein’s equation with numerical methods to simulate the binary merger process, played a crucial role in the detection of the gravitational wave signal as well as in interpreting the properties of the source. Moreover, the results of numerical relativity studies of binary neutron star mergers are essential for understanding the counterpart electromagnetic observations. In this article, the history and evolution of numerical relativity will be reviewed, as well as its role in gravitational wave detection and interpretation of the observations.
数值相对论 引力波天体物理 致密星物态 numerical relativity gravitational wave astrophysics equation of state of dense matter 
Journal of Semiconductors
2019, 48(9):
作者单位
摘要
1 华北电力大学 电气与电子工程学院, 河北 保定 071003
2 国网浙江省电力公司, 杭州 310007
3 国网浙江省电力公司 绍兴供电公司, 浙江 绍兴 312000
为了确保对新型智能变电站时间同步的动态监控, 分析了新型智能变电站中心交换设备时间同步的脆弱性, 利用有色Petri网对新型智能变电站中心交换设备对时的运行进行建模, 给出了新型智能变电站中心交换设备对时攻击有色Petri网模型。利用线性代数数学分析工具, 根据状态方程来验证所建模型攻击的可达性, 从而找到时间同步脆弱性点并给出解决建议。
新型智能变电站 中心交换机 有色Petri网 时间同步的脆弱性 状态方程 攻击的可达性 new intelligent substation center switch colored Petri network time synchronization of vulnerability equation of state the accessibility of attack 
光通信研究
2017, 43(3): 16
Author Affiliations
Abstract
Center for High Pressure Science and Technology Advanced Research, Shanghai, 201203, PR China
Recently we are witnessing the boom of high-pressure science and technology from a small niche field to becoming a major dimension in physical sciences. One of the most important technological advances is the integration of synchrotron nanotechnology with the minute samples at ultrahigh pressures. Applications of high pressure have greatly enhanced our understanding of the electronic, phonon, and doping effects on the newly emerged graphene and related 2D layered materials. High pressure has created exotic stoichiometry even in common Group 17, 15, and 14 compounds and drastically altered the basic s and p bonding of organic compounds. Differential pressure measurements enable us to study the rheology and flow of mantle minerals in solid state, thus quantitatively constraining the geodynamics. They also introduce a new approach to understand defect and plastic deformations of nano particles. These examples open new frontiers of high-pressure research.
High pressure science and technology Static high pressure Synchrotron X-ray probe Equation of state 
Matter and Radiation at Extremes
2016, 1(1): 59
Qiang He 1,2,3Xi Liu 1,2,*Baosheng Li 4Liwei Deng 5[ ... ]Liping Wang 6
Author Affiliations
Abstract
1 Key Laboratory of Orogenic Belts and Crustal Evolution, Ministry of Education of China, Beijing 100871, China
2 School of Earth and Space Sciences, Peking University, Beijing 100871, China
3 Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900, China
4 Mineral Physics Institute, Stony Brook University, Stony Brook, NY 11794-2100, USA
5 Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
6 High Pressure Science and Engineering Center and Department of Physics and Astronomy, University of Nevada, Las Vegas, NV 89154, USA
The thermal equation of state of a natural kyanite has been investigated with a DIA-type, cubic-anvil apparatus (SAM85) combined with an energy-dispersive synchrotron X-ray radiation technique up to 8.55 GPa and 1273 K. No phase transition was observed in the studied pressuretemperature (P-T ) range. The Le Bail full profile refinement technique was used to derive the unit-cell parameters. By fixing the bulk modulus K0 as 196 GPa and its pressure derivative K'0 as 4, our P-V (volume)-T data were fitted to the high temperature BircheMurnaghan equation of state. The obtained parameters for the kyanite are: V0=294.05(9)(10-10)3, α02.53(11)× 10-5K-1 and (?K/?T )P =-0.021(8) GPa?K-1. These parameters have been combined with other experimentally-measured thermodynamic data for the relevant phases to calculate the P-T locus of the reaction kyanite = stishovite+ corundum. With this thermodynamically constrained phase boundary, previous high-pressure phase equilibrium experimental studies with the multi-anvil press have been evaluated.
Kyanite Kyanite X-ray diffraction X-ray diffraction Thermal equation of state Thermal equation of state High-pressure and high-temperature High-pressure and high-temperature Kyanite decomposition Kyanite decomposition Thermodynamic calculation Thermodynamic calculation 
Matter and Radiation at Extremes
2016, 1(5): 269

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!