作者单位
摘要
1 华南理工大学 材料科学与工程学院 发光材料与器件国家重点实验室, 广东 广州 510641
2 浙江大学 光电科学与工程学院 现代光学仪器国家重点实验室,浙江 杭州 210027
自诺贝尔奖获得者高锟提出可用玻璃光纤代替传统电缆传输线,利用光波导传输光信号的方法来实现信息传输以来,人们就一直致力于优化现有光纤的性能和探索新的光纤激光介质材料。目前,用于光通信系统的光纤激光器和光放大器的增益光纤多见于稀土离子掺杂玻璃光纤,然而稀土离子固有的f-f跃迁导致较窄的传输带宽已经无法满足日益剧增的网络数据传输需求。铋(Bi)离子是继过渡金属离子、稀土离子后的第三类激活离子, 是激光材料领域发展的新方向。目前,Bi掺杂玻璃光纤已经在1150~1550 nm和1600~1800 nm范围内实现了激光输出和光信号放大。这充分说明了Bi掺杂玻璃光纤有望解决现有数据传输能力不足的问题,成为新一代光纤激光器和放大器的增益材料。因此,文中主要介绍Bi掺杂玻璃和光纤的研究进展,分析Bi掺杂玻璃及光纤材料目前存在的问题,并展望了未来的研究方向。
超宽带 红外发光 Bi掺杂玻璃 Bi掺杂光纤 ultra-broadband infrared luminescence Bi-doped glass Bi-doped fiber 
红外与激光工程
2023, 52(5): 20230097
作者单位
摘要
1 华南理工大学 材料科学与工程学院,发光材料与器件国家重点实验室,广东 广州 510641
2 华南理工大学 物理与光电学院,广东 广州 510641
近年来,全无机钙钛矿量子点因其优异的光电性能受到研究者的广泛关注,但其较差的稳定性极大地限制了其应用。利用玻璃优异的稳定性,控制钙钛矿量子点在玻璃中原位析出,使玻璃包覆在钙钛矿量子点周围,隔绝其与外界环境的接触,有效地提高了其稳定性。通过在钙钛矿量子点玻璃中掺杂特定的离子可以调控钙钛矿量子点的析晶情况和发光峰位,并可引入新的发光中心。本文根据掺杂离子的目的,综合介绍了离子掺杂钙钛矿量子点玻璃的研究进展,为近期关于离子掺杂钙钛矿量子点玻璃的研究提供了思路和参考。
玻璃 钙钛矿量子点 离子掺杂 glass perovskite quantum dots ion doping 
发光学报
2023, 44(3): 437
作者单位
摘要
1 清远南玻节能新材料有限公司,清远 511650
2 华南理工大学,材料科学与工程学院,广州 510641
移动通信的发展使人们对移动电子设备的需求大大增加,也给相应的盖板玻璃行业带来繁荣。各个玻璃厂商都基于传统铝硅酸盐玻璃推出了自己的优质产品,然而通过调整配方、改进化学钢化制度等传统方式来进一步提高玻璃性能正变得困难。近期通过晶化增强玻璃力学性能的透明微晶玻璃引起了行业的广泛关注。本文首先回顾已成熟的化学钢化工艺,并介绍其在高碱铝硅玻璃上的应用。随后介绍应用于盖板玻璃的透明铝硅酸盐微晶玻璃。最后,对传统钢化玻璃、新型透明微晶玻璃的研究以及未来的发展趋势进行总结。
铝硅酸盐玻璃 盖板玻璃 微晶玻璃 化学钢化 表面压应力 aluminosilicate glass cover glass glassceramics chemical temping compressive stress 
硅酸盐通报
2022, 41(11): 3925
作者单位
摘要
1 清远南玻节能新材料有限公司,广东 清远  511650
2 华南理工大学 材料科学与工程学院,发光材料与器件国家重点实验室,广东 广州  510641
微纳激光器能够将器件的物理尺寸缩小至微米甚至纳米级别,在集成光路和纳米技术等科技前沿领域有巨大的应用前景。在众多材料中,稀土离子掺杂激光增益微纳材料具有制备成本低、环境稳定性好、光谱丰富(紫外‐中红外)等独特优点,是一种理想的激光增益微纳材料。近年来,各种设计巧妙的稀土离子掺杂激光增益微纳材料的涌现,以及新型微纳光学谐振腔的设计和制造,大大促进了新兴稀土离子掺杂微纳激光器的发展。本文将从微纳激光器的基本组成出发,简要介绍新型稀土离子掺杂激光增益微纳材料的设计与制备,以及微纳光学谐振腔的基本原理;然后综述近期出现的具有代表性的稀土离子掺杂微纳激光器,讨论其制备工艺及激光性能。
稀土离子掺杂纳米材料 光学微腔 微纳激光器 rare-earth ions doped nanomaterials optical microcavity microlasers 
发光学报
2022, 43(11): 1663
作者单位
摘要
1 宁波大学高等技术研究院红外材料及器件实验室, 宁波 315211
2 华南理工大学材料科学与工程学院, 广州 510640
光电功能纳米晶复合玻璃光纤在光通信、遥感、生物医学和非线性光学等领域具有广阔的应用前景。本文呈现了一种通用的光纤拉制方法(管内熔融法)来制备纳米晶复合玻璃光纤。在光纤制备过程中, 纤芯处于完全熔融状态, 而包层恰好处于软化状态。基于此方法, 介绍了玻璃纤芯-玻璃包层光纤、晶体纤芯-玻璃包层光纤和半导体纤芯-玻璃包层光纤的最新研究进展。此外, 还讨论了纳米晶复合玻璃光纤在光纤激光、光纤传感、频率转换、光电探测和热电转换等领域的广泛应用。
纳米晶复合玻璃光纤 管内熔融法 光电性能 nanocrystals doped glass fibers melt-in-tube method optoelectronic properties 
硅酸盐学报
2022, 50(4): 1172
作者单位
摘要
1 华南理工大学材料科学与工程学院发光材料与器件国家重点实验室,广东省激光光纤材料与 应用重点实验室,广东 广州 510640
2 华南理工大学物理与光电学院,广东 广州 510640
3 浙江大学光电科学与工程学院,浙江 杭州 310027
随着激光玻璃及光功能玻璃应用需求的快速增长,对光功能玻璃在光学性能和机械性能的要求越加趋向于多元化,而玻璃结构的不确定性和组分连续可调的特性阻碍了新型光功能玻璃材料的快速研发,为了摆脱传统的“试错型”设计模式,缩短玻璃材料开发的成本与周期,提升玻璃材料设计与制备过程的可预测性,“材料基因组计划”应运而生。“材料基因组计划”将高性能计算、数据和实验相结合,根据材料的组分对材料的特性进行定量地准确预测,从而指导新型材料的设计与开发。本文归纳并总结了目前应用于激光玻璃及光功能玻璃领域中的“材料基因工程”的不同理论与建模流程,分为基于物理定义推导的物理性方法、对实验数据进行统计分析的经验性方法、理论和经验相结合的理论-经验结合法。在此基础上,从激光玻璃和光功能玻璃材料出发,重点介绍“材料基因工程”在该领域的最新进展,并对未来的发展方向进行了展望。
材料 材料基因组计划 玻璃 理论计算 成分-结构-性质关系 
激光与光电子学进展
2022, 59(15): 1516002
作者单位
摘要
激光与光电子学进展
2022, 59(15): 1500000
王伟 1古权 1陈钦鹏 1尹博钊 1[ ... ]董国平 1,**
作者单位
摘要
1 华南理工大学材料科学与工程学院,发光材料与器件国家重点实验室,广东 广州 510640
2 华南理工大学分析测试中心,广东 广州 510640
3 华南理工大学物理与光电学院,广东 广州 510640

宽带可调谐中红外光源在光谱传感器以及医疗、环境监测等实际应用方面备受关注。目前,发光玻璃主要通过稀土离子掺杂来实现中红外波段发光,但其可调范围较小。PbSe量子点具有较窄的带隙、较大的玻尔半径,因而易实现量子限域效应。在低声子能量的锗酸盐玻璃中原位析出PbSe量子点,有望产生近中红外宽带可调谐荧光发射。本课题组利用管内熔融法成功制备了全固态PbSe量子点掺杂玻璃光纤,获得了覆盖1.8~2.8 μm的宽带可调谐发射,有望用于宽带可调谐中红外光源。

光纤光学 PbSe量子点 玻璃光纤 中红外宽带发光 管内熔融法 
中国激光
2022, 49(1): 0101013
Author Affiliations
Abstract
1 State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
2 Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong, China
3 Analytical and Testing Center, South China University of Technology, Guangzhou 510640, China
4 School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China
With the rapid growth of optical communications traffic, the demand for broadband optical amplifiers continues to increase. It is necessary to develop a gain medium that covers more optical communication bands. We precipitated PbS quantum dots (QDs) and BaF2:Tm3+ nanocrystals (NCs) in the same glass to form two independent emission centers. The BaF2 NCs in the glass can provide a crystal field environment with low phonon energy for rare earth (RE) ions and prevent the energy transfer between RE ions and PbS QDs. By adjusting the heat treatment schedule, the emission of the two luminescence centers from PbS QDs and Tm3+ ions perfectly splices and covers the ultra-broadband near-infrared emission from 1200 nm to 2000 nm with bandwidth over 430 nm. Therefore, it is expected to be a promising broadband gain medium for fiber amplifiers.
PbS quantum dot Tm3+ nanocrystal-glass composite broadband near-infrared emission 
Chinese Optics Letters
2022, 20(2): 021603
作者单位
摘要
1 华南理工大学材料科学与工程学院,广东 广州 510640
2 浙江大学光电科学与工程学院,浙江 杭州 310027
低维微/纳材料具有高度的各向异性,表现出显著的光偏振特性,在液晶显示背光、可见光通信、光电探测、光学量子计算、医学治疗和超分子手性控制等诸多领域具有良好的应用前景。稀土离子掺杂材料在形貌、尺寸、胶体单分散性及发光过程等方面实现了精确可控,为探究稀土离子的光偏振特性奠定了基础。目前,已经探测到多种稀土离子在不同结构中的光偏振特性。简要归纳了稀土离子掺杂材料的光偏振特性的相关研究工作,根据偏振光的分类,主要介绍了稀土离子在不同结构中发光的线偏振特性和圆偏振特性,对这两种偏振特性的影响因素及其与结构之间的关系进行了深入的分析与讨论,总结了稀土离子掺杂材料的光偏振特性在不同领域的应用前景,并展望了其未来的发展方向。
材料 稀土离子 各向异性 线偏振 手性结构 圆偏振 
激光与光电子学进展
2021, 58(15): 1516017

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!