作者单位
摘要
1 北京应用物理与计算数学研究所, 北京 100094
2 中国工程物理研究院 激光聚变研究中心, 四川 绵阳 621900
3 北京大学 应用物理与技术研究中心, 高能量密度物理数值模拟教育部重点实验室, 北京 100871
4 中国工程物理研究院, 四川 绵阳 621900
在神光Ⅱ激光装置上开展了一系列辐射烧蚀Rayleigh-Taylor(RT)不稳定性实验。平面靶烧蚀加速飞行轨迹实验结果与LARED-S模拟结果的比较表明腔壁辐射源能流明显小于激光注入孔的辐射能流, 且辐射源的非平衡Planckian谱对靶的飞行轨迹和扰动增长有重要影响。 实验分别观测到初始小扰动幅度烧蚀RT 明显的增长和初始大扰动幅度尖钉变窄和气泡变宽的清晰物理图像。 通过提高空间分辨率, 实验获得了二次和三次谐波的增长数据, 模拟结果与实验结果相符合。 神光Ⅱ 激光装置上开展的流体不稳定性实验考核了LARED-S程序的一维和二维计算。
惯性约束聚变 流体力学不稳定性 瑞利-泰勒不稳定性 inertial confinement fusion hydrodynamic instabilities Rayleigh-Taylor instability 
强激光与粒子束
2015, 27(3): 032009
作者单位
摘要
北京应用物理与计算数学研究所,北京,100088
使用LARED-S程序,参照NIF直接驱动DT点火靶,模拟研究了激光非均匀性对高收缩比球内爆内界面变形的影响.2维数值模拟计算表明:直接驱动高收缩比内爆对驱动激光非均匀性非常敏感,内界面流体不稳定性的发展严重破坏靶丸的对称压缩,使中心热斑的体积显著减小.以最大压缩时扰动增长幅度不超过热斑半径的1/3为限,模拟给出不同模数的低阶扰动模(模数小于等于12)对驱动激光均匀性的要求在2.5%~0.25%之间,其中模数在8~10之间的扰动模对激光功率均匀性的要求最严格,约为0.25%.
惯性约束聚变 流体不稳定性 收缩比 非均匀性 数值模拟 
强激光与粒子束
2007, 19(8): 1283
作者单位
摘要
1 中国工程物理研究院,研究生部,北京,100088
2 北京应用物理与计算数学研究所,北京,100088
实现中心点火的基本条件是在内爆中心形成面密度0.3 g/cm2,温度10 keV的点火热斑.减速阶段流体不稳定性的增长,会破坏对称压缩,减小热斑体积,直接破坏点火热斑的形成,对点火构成威胁.在原有LARED-S程序的基础上,加入热核反应和α粒子加热过程程序模块,对直接驱动ICF球内爆过程进行数值模拟研究,1维模拟结果与NIF直接驱动点火靶的设计基本相符,显示α粒子加热对边缘点火起重要作用;2维模拟表明减速阶段流体不稳定性对点火有重要影响.
中心点火 α粒子加热 流体不稳定性 靶能量增益 
强激光与粒子束
2006, 18(8): 1297

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!