作者单位
摘要
1 江苏大学食品与生物工程学院, 江苏 镇江 212013
2 2. Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
近红外光谱因为具有小成本、 易操作、 低耗时等优点, 所以广泛用于食品领域。 作为一种间接的检测方法, 近红外光谱检测需要建立光谱和浓度之间的统计模型。 但是, 一种条件下建立的模型在另一种检测条件下会失效。 针对此问题, 重新建模可以加以解决, 但是重新建立光谱与浓度之间的模型非常繁琐耗时。 此时, 模型转移可以在避免重新建模的情况下, 通过光谱校正, 保证预测精度。 在模型转移中, 已经建立好模型的光谱称为主光谱(A), 不用建立模型, 而只用主光谱模型预测的光谱称为从光谱 (B)。 模型转移方法的步骤是, 先在校正集中选择一些样本作为主光谱的转移集(At), 然后选择从光谱中浓度和At相同的光谱, 以此作为从光谱的转移集(Bt)。 通过AtBt构建模型转移矩阵。 最后将需要校正的从光谱(Bv)乘以上述的转移矩阵中, 即可获得校正后的从光谱(Bnew)。 此时, Bnew就可以用主光谱的模型来直接预测。 在模型转移中, 转移集样本的选择对模型校正至关重要。 目前, 转移集的样本通常从光谱之间的距离而非模型转移误差获得。 但是, 转移误差对模型转移结果的验证至关重要, 故该研究出了基于集群分析的集群优化法(ER)并将其用于优化KS方法产生的转移集样本。 ER先用随机方法建立转移集的多个子集合, 并计算每个子集合的转移误差。 然后, 对某一个样本, 计算包含这个样本的子集合转移误差均值。 最后, 选择转移误差均值较低的样本作为新转移集样本进行模型转移。 以玉米数据测试了ER算法。 结果显示, 对于典型相关分析-有信息成分提取法(CCA-ICE)、 直接校正法(DS)、 分段直接校正法(PDS)、 光谱空间转化法(SST)这些常见的模型转移方法, 相比于KS样本选择方法, ER方法可以找出重要的转移集样本, 进而显著降低模型转移误差。
模型转移 集群分析 样本选择 偏最小二乘 近红外光谱 Calibration transfer Model population analysis Sample selection Partial least squares Near-infrared spectrum 
光谱学与光谱分析
2022, 42(4): 1323
作者单位
摘要
江苏大学食品与生物工程学院, 江苏 镇江 212013
在近红外光谱分析中, 将近红外光谱和浓度信息建立统计模型, 通过光谱代入模型即可预测未知样本浓度。 但是, 检测条件的变化会导致光谱的改变, 进而导致原有的模型不能准确预测光谱改变后的样本。 对此, 模型转移可以通过校正新测量的光谱(从光谱), 使得从光谱能够被原有光谱(主光谱)建立的模型准确预测。 模型转移可以使用全光谱进行校正, 但是全光谱中往往包括噪声、 背景等干扰信息, 这些干扰会增加预测误差。 故可以使用变量选择方法找出光谱中有化学意义的信息来模型转移。 但是一般的变量选择算法只选择主光谱的区间, 从光谱使用主光谱相同的波长区间模型转移。 但是在实际工作中, 主光谱和从光谱有化学意义的区间往往不一致, 主从光谱使用同一区间模型转移会增加误差; 此外, 有时二者原光谱的波长范围并不一致, 从主光谱选出的区间不能用于从光谱的校正。 对此, 提出了基于双光谱区间遗传算法(GA-IDS), 同时选择主光谱和从光谱有化学意义的区间, 进而实现模型转移。 GA-IDS算法步骤包括, ①随机产生种群; ②分析种群中每条染色体, 删去错误染色体; ③根据每条染色体, 找出其相应的主光谱和从光谱波段组合, 并计算其模型转移后的验证均方根误差(RMSEV); ④按照概率, 执行选择、 交叉、 变异操作。 在一次迭代结束之后, 返回到步骤②, 重新执行纠错、 计算RMSEV、 选择、 交叉、 变异。 达到停止迭代的要求后, 将最低的RMSEV值所对应的染色体保存下来作为最优染色体, 其所对应的主从光谱区间作为最优区间。 用玉米、 小麦两套数据测试了该算法, 结果显示, 与全光谱相比, GA-IDS选择的主从光谱区间可以显著地降低误差; 与向后迭代区间选择法(IIBS)相比, 在小样本情况下, GA-IDS的误差显著地小于IIBS方法。
近红外光谱 模型转移 遗传算法 变量选择 向后迭代区间选择法 Near-infrared spectra Calibration transfer Genetic algorithm Variable selection Iterative interval backward selection 
光谱学与光谱分析
2022, 42(12): 3783
作者单位
摘要
江苏大学食品与生物工程学院, 江苏 镇江 212013
近红外光谱(NIR)具有快速、 无损、 操作方便的特点, 故广泛用于食品分析。 作为一种间接的分析技术, NIR需要建立光谱与待测浓度之间的统计模型来实现检测。 故模型的维护有助于保证NIR的预测准确性。 在外界条件发生变化的情况下, 诸如样品性状的改变、 仪器对理化指标函数关系的变化、 湿度和温度等环境因素的改变, 会导致相同样品的光谱信号发生偏移, 进而使得原有模型的预测精度下降。 此时, 如果重新建模, 虽然可以解决光谱偏移对建模的影响, 但是重新建模将耗费大量的人力物力。 对此, 模型转移可以在避免重新建模的情况下, 校正光谱的偏移, 进而提高模型预测精度。 通常模型转移算法多用全光谱进行模型转移, 这种方法计算量较大, 且不能找到合适的有化学意义的波段。 故提出一种基于模型转移中的变量选择方法: 向后迭代区间选择法(IIBS), 通过计算主光谱(用于建模的那组光谱)和从光谱(发生偏移, 需要通过模型转移算法将其校正的光谱)中, 变量区间的重要性信息(回归系数(β)、 残差向量(Res)以及变量重要性投影(VIP))。 进而通过计算该区间变量重要性信息的几何平均数, 并以此作为该区间的区间重要性指标。 接着根据区间的重要性, 删除重要性信息较小的变量区间。 然后对主光谱和从光谱重复迭代上述过程: 计算变量的重要性信息, 计算区间的重要性信息, 删除重要性信息较小的区间。 最后, 比较不同的主光谱和从光谱区间组合的验证均方根误差(RMSEV), 选择RMSEV最小的主光谱和从光谱区间作为最优区间。 玉米、 小麦两套NIR数据测试了该算法。 结果显示, 与全波段相比, β, Res以及VIP均可以从主光谱和从光谱中选择较少的, 有化学意义的区间, 提高模型转移的精度。 在比较不同变量重要性向量方面, 基于β的变量选择算法, 模型转移的计算误差较小。
近红外光谱 模型转移 变量选择 回归系数 残差向量 VIP值 Near infrared spectra Calibration transfer Variable selection Regression coefficient Residual error VIP 
光谱学与光谱分析
2021, 41(6): 1789
作者单位
摘要
1 江苏大学食品与生物工程学院, 江苏 镇江 212013
2 Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
样本选择是模型转移的重要组成部分, 其目的是在主光谱和从光谱中选择合适的样本, 建立二者的转移模型, 使得从光谱的预测样本能通过转移模型校正成类似于主光谱的样本, 进而用主光谱的模型直接预测其浓度。 目前, 常用的样本选择算法有: Kennard-Stone 法 (KS法), SPXY法和SPXYE法。 根据上述算法的特点, 提出了一种新的样本选择方法: 加权SPXYE法(WSPXYE法), 进而将其用于选择合适的转移集样本。 WSPXYE同样先计算样本间的距离, 其距离有三个部分组成: 光谱(X)之间的归一化距离dxs, 浓度(y)之间的归一化距离dys, 以及校正误差(e)之间的归一化距离des。 其加权代数和dwspxye=αdxs+βdys+(1-α-β)des即为WSPXYE距离。 计算了WSPXYE距离之后, 可以根据其距离选择距离较大的样本作为转移集样本。 WSPXYE是Kennard-Stone法(KS法), SPXY法和SPXYE法的推广, 而KS法(α=1, β=0)、 SPXY法(α=0.5, β=0.5)以及SPXYE法(α=0.333, β=0.333)则是WSPXYE法的特例。 直接校正法(DS)、 有信息成分提取-典型相关分析法(CCA-ICE)作为模型转移算法验证了WSPXYE方法的效果。 结果显示, 与KS法、 SPXY法以及SPXYE法相比, WSPXYE法可以通过调节参数, 选择合适的样本, 获得较低的误差。
样本选择 模型转移 WSPXYE WSPXYE Kennard-Stone Kennard-Stone SPXY SPXY SPXYE SPXYE Sample selection Calibration transfer 
光谱学与光谱分析
2021, 41(3): 984
作者单位
摘要
江苏大学食品与生物工程学院, 江苏 镇江 212013
小麦是制作馒头的主要原料之一, 小麦中水、 蛋白质、 淀粉会因产地以及烘干程度的差异而不同, 进而影响到加工成馒头的品质。 所以实现对小麦产地和烘干程度的快速鉴别就显得尤为重要。 感官评定是鉴别小麦产地和烘干程度常用的方法, 对比感官评定, 光谱分析可以识别样品中的分子结构等信息。 基于此, 尝试利用近红外和中红外光谱融合技术实现对不同产地和不同烘干程度的小麦同时鉴别。 首先选取了两个不同产地的小麦, 再利用微波干燥法对两个不同产地的小麦做烘干预处理, 使烘干的小麦水含量为12%±0.5%, 原麦水含量为18%±0.5%。 分别标记为原麦A, 烘干A, 原麦B, 烘干B, 再将小麦研磨成粉末, 过100目筛网筛选后, 置于自封袋中备用。 随后分别采集四种小麦样品的近红外和中红外光谱信息, 在Matlab 7.10的环境下使用标准正态变量变换(standard normal variable transformation, SNVT)对采集到的原始光谱数据进行预处理, 利用主成分分析对预处理后的数据进行降维处理, 再结合线性判别分析(linear discriminant analysis, LDA)和支持向量机(support vector machine, SVM)分别建立小麦近红外、 中红外光谱数据识别模型。 另外利用联合区间偏最小二乘法(synergy interval partial least square, SiPLS)筛选出利用标准正态变量变换(SNVT)预处理后的小麦近红外和中红外光谱数据特征光谱区间, 将筛选出的近红外和中红外光谱数据特征光谱区间融合后再结合线性判别分析(LDA)和支持向量机(SVM)建立小麦融合光谱信息的识别模型。 然后比较同种光谱数据下利用线性判别分析(LDA)和支持向量机(SVM)建立的小麦识别模型识别率、 比较同种建模方法下近红外和中红外光谱数据建立小麦识别模型识别率、 比较同种建模方法下光谱数据融合和单一光谱数据建立小麦识别模型识别率。 结果表明, 同种光谱分析方法, 利用SVM建立的四种小麦识别模型识别率高于利用LDA建立的小麦识别模型识别率。 同种建模方法, 近红外光谱数据建立的小麦识别模型识别率优于中红外光谱数据建立的小麦识别模型识别率。 而在同种建模方法下, 利用SiPLS筛选出近红外和中红外光谱数据的特征光谱区间数据融合后建立小麦识别模型识别率最高, 光谱数据融合后结合LDA建立的小麦识别模型校正集识别率为98.75%, 预测集识别率为97.50%; 而将此选择的变量结合SVM建立的小麦识别模型的校正集和预测集识别率都达到100.0%。 对比利用单一光谱数据建立的小麦识别模型识别率, 光谱数据融合之后建立的小麦识别模型识别率得到显著提高, 该研究从纵向和横向上全面地比较了光谱数据建立的小麦模型识别率, 结果可为更准确地运用光谱融合技术建立小麦产地以及烘干程度识别模型提供参考。
小麦 光谱分析技术 联合区间偏最小二乘法 线性判别分析 支持向量机 Wheat Spectral analysis technology Synergy interval partial least square (SiPLS) Linear discriminant analysis (LDA) Support vector machine (SVM) 
光谱学与光谱分析
2019, 39(5): 1445

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!