作者单位
摘要
1 西安电子科技大学,陕西 西安 710071
2 中国科学院国家授时中心,陕西 西安 710600
为了进一步提高时间传递的稳定度,提出了一种基于光纤频率传递的高精度时间传递方法。在保证光纤时间传递不确定度的情况下,结合光纤频率传递的高稳定度特性,所提方法实现了兼具高稳定度和良好不确定度的光纤时间传递。在光纤时间频率传递的基础上,利用光纤频率传递系统输出的频率信号再生出具有高稳定度的1PPS(one pulse per second)时间信号,并使再生的1PPS时间信号跟踪光纤时间传递系统输出的1PPS时间信号,进而使再生出的1PPS时间信号同时具有较好的稳定度和不确定度。为了验证所提方法的可行性,使用光纤链路测得的时间传递数据进行仿真实验,所提方法使光纤时间传递稳定度提高至0.5 ps@1 s和0.09 ps@104 s。在500 km长的实验室光纤链路上,利用光纤时间频率传递实验装置进行了测试,所提方法实现了稳定度为2.5 ps@1 s和0.9 ps@105 s,不确定度为6.4 ps的高精度时间传递。
光纤光学 频率传递 时间传递 时间再生 
光学学报
2022, 42(15): 1506002
周旭 1,2,3陈法喜 1,2赵侃 1,2刘涛 1,2张首刚 1,2
作者单位
摘要
1 中国科学院国家授时中心, 陕西 西安 710600
2 中国科学院国家授时中心时间频率基准重点实验室, 陕西 西安 710600
3 中国科学院大学, 北京 100049
为了满足长距离光纤时间传递的工程要求,提出了一种基于时间数字转换(TDC)和现场可编程门阵列(FPGA)的时延测量方法。该方法将FPGA测量范围大和TDC分辨率高的特点相结合,实现了大范围高分辨率的光纤时延测量。研究结果表明,该系统的测量范围为0~1 s,分辨率为22 ps,不确定度优于100 ps。
测量 光纤链路 光纤时间传递 时延测量 
激光与光电子学进展
2018, 55(8): 081201

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!