Yongfeng Zhang 1,2,3Hao Xian 1,2,*
Author Affiliations
Abstract
1 Key Laboratory on Adaptive Optics, Chinese Academy of Sciences, Chengdu 610209, China
2 Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China
3 University of Chinese Academy of Sciences, Beijing 100049, China
Dispersed fringe sensors are a promising approach for sensing the large-scale physical step between adjacent segments with acceptable accuracy. However, the nature of dispersion in a dispersed fringe sensor leads to the ideal dispersed fringe pattern becoming vulnerable to noise, particularly at low light levels. A reliable merit-function-based algorithm with an active actuation is introduced here. The feasibility of our algorithm is numerically demonstrated, and Monte Carlo experiments for different signal-to-noise ratios are conducted to assess its robustness. The results show that the method is valid even when the signal-to-noise ratio is as low as 1.
110.6770 Telescopes 220.1140 Alignment 220.1080 Active or adoptive optics 130.6010 Sensors 
Chinese Optics Letters
2019, 17(12): 121101
Min Li 1,2,3Xin Liu 2Ang Zhang 1,2,*Hao Xian 1,2,**
Author Affiliations
Abstract
1 Key Laboratory of Adaptive Optics, Chinese Academy of Sciences, Chengdu 610209, China
2 Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China
3 University of Chinese Academy of Sciences, Beijing 100049, China
The precise alignment of a high-performance telescope is a key factor to ensure the imaging quality. However, for telescopes with a wide field of view, the images are sometimes under-sampled. To study the effects of under-sampled images on the precision of telescope alignment, numerical simulations are implemented with the stochastic parallel gradient descent algorithm. The results show that the alignment program can converge stably and quickly. However, with the reduction of the full width at half-maximum of images, the relative residual errors increase from 9.5% to 19.5%, and the wavefront errors raise from 0.0972λ to 0.1074λ, indicating that the accuracy of the alignment decreases.
110.6770 Telescopes 120.4820 Optical systems 220.1140 Alignment 220.1080 Active or adoptive optics 
Chinese Optics Letters
2019, 17(6): 061101
Author Affiliations
Abstract
1 Center for Photonics and Electronics, Department of Precision Instruments, Tsinghua University, Beijing 100084, China
2 Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
In this Letter, a 116-actuator deformable mirror (DM) was used to correct the wavefront distortion in a 10.7 J, 10 Hz neodymium-doped yttrium aluminum garnet (Nd:YAG) slab amplifier. By applying a pump-light homogenizer to transform the 3 × 1 near-field beam array into an integrated beam, the beam quality was greatly improved from 5.54 times diffraction limit (TDL) to 1.57 TDL after being corrected by the DM. To the best of our knowledge, this is the first investigation on beam quality control of an arrayed near-field beam in high-energy diode-pumped solid-state lasers.
140.3280 Laser amplifiers 140.3480 Lasers, diode-pumped 220.1080 Active or adoptive optics 220.1000 Aberration compensation 
Chinese Optics Letters
2019, 17(5): 051403
Yanrong Yang 1,2,3Junlei Zhao 1,2Haoxin Zhao 1,2Fei Xiao 1,2[ ... ]Yun Dai 1,2,*
Author Affiliations
Abstract
1 Key Laboratory on Adaptive Optics, Chinese Academy of Sciences, Chengdu 610209, China
2 Laboratory on Adaptive Optics, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China
3 University of Chinese Academy of Sciences, Beijing 100049, China
4 School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
An objective visual performance evaluation with visual evoked potential (VEP) measurements was first integrated into an adaptive optics (AO) system. The optical and neural limits to vision can be bypassed through this system. Visual performance can be measured electrophysiologically with VEP, which reflects the objective function from the retina to the primary visual cortex. The VEP measurements without and with AO correction were preliminarily carried out using this system, demonstrating the great potential of this system in the objective visual performance evaluation. The new system will provide the necessary technique and equipment support for the further study of human visual function.
330.4460 Ophthalmic optics and devices 220.1080 Active or adoptive optics 330.4300 Vision system - noninvasive assessment 330.1070 Vision - acuity 
Chinese Optics Letters
2018, 16(5): 053301
Author Affiliations
Abstract
1 School of Electrical and Computer Engineering and Inter-University Semiconductor Research Center, Seoul National University, Gwanak-Gu Gwanakro 1, Seoul 08826, South Korea
2 School of Electronics Engineering, Kyungpook National University, Daegu 41566, South Korea
We propose the active metasurface using phase-change material Ge2Sb2Te5 (GST), which has two distinct phases so called amorphous and crystalline phases, for an ultrathin light path switching device. By arranging multiple anisotropic GST nanorods, the gradient metasurface, which has opposite directions of phase gradients at the two distinct phases of GST, is demonstrated theoretically and numerically. As a result, in the case of normal incidence of circularly polarized light at the wavelength of 1650 nm, the cross-polarized light deflects to 55.6° at the amorphous phase and +55.6° at the crystalline phase with the signal-to-noise ratio above 10 dB.
160.3918 Metamaterials 220.1080 Active or adoptive optics 
Chinese Optics Letters
2018, 16(5): 050009
Yuanyuan Wang 1,2,3,4Yi He 1,2,*Ling Wei 1,2Xiqi Li 1,2[ ... ]Yudong Zhang 1,2
Author Affiliations
Abstract
1 The Key Laboratory on Adaptive Optics, Chinese Academy of Sciences, Chengdu 610209, China
2 University of Chinese Academy of Sciences, Beijing 100039, China
3 School of Ophthalmology & Optometry and Eye Hospital, Wenzhou 325035, China
4 Wenzhou Medical University, Wenzhou 325035, China
A bimorph deformable mirror (DM) with a large stroke of more than 30 μm using 35 actuators is presented and characterized for an adaptive optics (AO) confocal scanning laser ophthalmoscope application. Facilitated with a Shack–Hartmann wavefront sensor, the bimorph DM-based AO operates closed-loop AO corrections for human eyes and reduces wavefront aberrations in most eyes to below 0.1 μm rms. Results from living eyes, including one exhibiting 5D of myopia and 2D of astigmatism along with notable high-order aberrations, reveal a practical efficient aberration correction and demonstrate a great benefit for retina imaging, including improving resolution, increasing brightness, and enhancing the contrast of images.
110.0110 Imaging systems 110.1080 Active or adoptive optics 170.1790 Confocal microscopy 
Chinese Optics Letters
2017, 15(12): 121102
Author Affiliations
Abstract
1 Key Laboratory on Adaptive Optics, Chinese Academy of Sciences, Chengdu 610209, China
2 Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China
A zonal decoupling algorithm used to control a dual deformable mirror (DM) is proposed. One of the two DMs is characterized with a large stroke (woofer), while the other one is characterized by a high spatial frequency (tweeter). A numerical model is used to compare the zonal decoupling algorithm with some traditional zonal decoupling algorithms. The simulation results indicate that the algorithm presented in this Letter improves the performance in suppressing the coupling error. An experimental system is built to prove the effectiveness of this algorithm. The experiments demonstrate that the phase aberrations could be effectively compensated and that the coupling error could also be suppressed.
010.1080 Active or adoptive optics 220.1080 Active or adoptive optics 000.3860 Mathematical methods in physics 
Chinese Optics Letters
2016, 14(2): 020101
Author Affiliations
Abstract
School of Optoelectronics, Beijing Institute of Technology, Beijing 100081, China
An improved model-based wavefront sensorless adaptive optics algorithm is proposed for laser beam cleanup. Deformable mirror (DM) eigenmodes are used to replace traditional Lukosz modes in order to avoid DM fitting errors. The traditional method is based on a sophisticated calibration process and solving linear equations. In our method, coefficients of DM eigenmodes are estimated by adding bidirectional modal biases into the system and then solving parabolic equations. The calibration process is omitted in our method, which makes it more feasible. From simulation and experimental results, the corrective accuracy of the improved method is higher than the traditional one.
140.3300 Laser beam shaping 220.1080 Active or adoptive optics 
Chinese Optics Letters
2016, 14(3): 031406
Author Affiliations
Abstract
1 Key Laboratory on Adaptive Optics, Chinese Academy of Sciences, Chengdu 610209, China
2 Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China
3 University of Chinese Academy of Sciences, Beijing 100049, China
4 Institute of North Optics and Electronic, Beijing 100015, China
We present a hybrid adaptive optics system for a kW-class solid-state slab master oscillator power amplifier laser that consists of both a low-order aberration corrector and a 59-actuator deformable mirror. In this system large defocus and astigmatism of the beam are first corrected by the low-order aberration corrector and then the remaining components are compensated by the deformable mirror. With this sequential procedure it is practical to correct the phase distortions of the beam (peak to valley up to 100 μm) and the beam quality β is successfully improved to 1.9 at full power.
010.1080 Active or adoptive optics 140.5680 Rare earth and transition metal solid-state lasers 090.1000 Aberration compensation 
Chinese Optics Letters
2016, 14(9): 091402
Lin Kong 1,2,3Lanqiang Zhang 1,2,*Lei Zhu 1,2Hua Bao 1,2[ ... ]Changhui Rao 1,2
Author Affiliations
Abstract
1 The Key Laboratory on Adaptive Optics, Chinese Academy of Sciences, Chengdu 610209, China
2 The Laboratory on Adaptive Optics, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China
3 University of Chinese Academy of Sciences, Beijing 100049, China
A prototype of a solar ground-layer adaptive optics (GLAO) system, which consists of a multi-direction correlating Shack–Hartmann wavefront sensor with 30 effective subapertures and about a 1 arcmin field of view (FoV) in each subaperture, a deformable mirror with 151 actuators conjugated to the telescope entrance pupil, and a custom-built real-time controller based on field-programmable gate array and multi-core digital signal processor (DSP), is implemented at the 1 m New Vacuum Solar Telescope at Fuxian Solar Observatory and saw its first light on January 12th, 2016. The on-sky observational results show that the solar image is apparently improved in the whole FoV over 1 arcmin with the GLAO correction.
010.1080 Active or adoptive optics 110.1080 Active or adoptive optics 
Chinese Optics Letters
2016, 14(10): 100102

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!