孙浩洋 1,2,*董丽芳 1,2韩蓉 1,2刘彬彬 1,2[ ... ]郝芳 1,2
作者单位
摘要
1 河北大学物理科学与技术学院, 河北 保定 071002
2 河北省光电信息材料重点实验室, 河北 保定 071002
介质阻挡放电系统(DBD) 作为一个典型的非平衡气体放电系统, 不仅在工业生产如低温等离子体生产和发光等方面被广泛应用, 而且该系统表现出的非线性现象、 自组织现象也吸引人们的关注。 DBD系统中放电丝的等离子体参量受诸多因素影响, 为了探究DBD系统的放电条件对等离子体参量的影响, 该实验重新设计放电单元以保证在其他实验条件相同的情况下, 对放电气隙间距和气体组分与等离子体参数之间的关系展开研究。 本实验的放电单元为一个平板型玻璃框架气隙, 该气隙由三个厚度均为1.2 mm, 放电区域边长分别为40, 30和20 mm的正方形玻璃框架复合而成, 因此该放电气隙有三个放电区域, 将此复合气隙放置于可调节气体成分和压强的真空室内, 可以同时产生三种放电气隙间距分别为1.2, 2.4和3.6 mm的等离子体放电丝。 高速录像机拍摄的瞬时照片表明三种放电丝均为随机放电丝, 即其放电类型均为流光放电。 在垂直于放电气隙平面的方向设置光路, 使用聚焦透镜获得清晰的成像, 移动光纤探头实现空间分辨并采集数据。 实验用光谱仪采集三种等离子体的氮分子第二正带系(C3Πu→B3Πu) 谱线, 根据谱线强度计算得到各类放电丝的分子振动温度; 利用谱线中包含的氮分子离子N+2第一负带系谱线(391.4 nm)和氮分子第二正带系394.1 nm谱线强度的比值反应放电丝中电子平均能量; 改变气室内氩气的含量, 得到了三种等离子体的分子振动温度和电子平均能量的变化趋势。 实验结果表明: 在氩气含量0%~60%区间内, 随着氩气含量的增加, 三种等离子体的分子振动温度均先升高后降低, 整体趋势表现为相同氩气含量下放电气隙间距越小分子振动温度越高, 即1.2 mm气隙厚度中的放电丝的分子振动温度最高, 2.4 mm气隙厚度次之, 3.6 mm气隙厚度的最低; 随氩气含量的增加放电丝的平均电子能量先升高后降低, 氩气含量相同时气隙厚度越小的放电丝的电子平均能量越高, 即1.2 mm气隙厚度中放电丝的电子平均能量最高, 2.4 mm气隙厚度的次之, 3.6 mm气隙厚度中的最低。 实验结果对于研究DBD系统中等离子体参量、 工业生产等方面具有重要的参考意义。
介质阻挡放电 发射光谱 分子振动温度 电子平均能量 Dielectric barrier discharge Optical emission spectrum Molecular vibration temperature Electron average energy 
光谱学与光谱分析
2019, 39(2): 406
冯建宇 1,2,*董丽芳 1,2魏领燕 1,2刘莹 1,2牛雪姣 1,2
作者单位
摘要
1 河北大学物理科学与技术学院, 河北 保定 071002
2 河北省光电信息材料重点实验室, 河北 保定 071002
在空气与氩气组成的混合气体的介质阻挡放电实验中, 采用发射光谱法, 首次研究了放电气隙分别为: 1, 4和2 mm三层放电气隙中的放电丝的光谱特性。 这与以往的单层放电气隙或者是双层放电气隙中的放电丝在光谱特性方面有很大的不同。 实验通过采集氮分子第二正带系(C3Πu→B3Πg)谱线, 计算出不同放电气隙中的放电丝的分子振动温度。 利用氮分子离子3914 nm谱线强度与氮分子3941 nm谱线的强度之比得到不同放电气隙中放电丝的电子平均能量。 增加氩气在混合气体中的比例, 得到分子振动温度及电子平均能量随着氩气含量增加的变化趋势。 实验结果表明: 在同一氩气含量下, 分子振动温度从小到大的顺序为: 2 mm放电气隙, 1 mm放电气隙, 4 mm放电气隙。 电子平均能量从小到大的顺序为: 4 mm放电气隙, 2 mm放电气隙, 1 mm放电气隙。 三层放电气隙中放电丝的分子振动温度及电子平均能量均随着氩气含量的增加而减小。
介质阻挡放电 分子振动温度 电子平均能量 Dielectric barrier discharge Molecule vibrational temperature Electron average energy 
光谱学与光谱分析
2017, 37(2): 387
作者单位
摘要
河北大学物理科学与技术学院, 河北省光电信息材料重点实验室, 河北 保定 071002
在空气与氩气按比例混合组成的气体放电中, 研究了由中心点和六边形晕组成的六边形晕斑图。 从照片中观察六边形晕斑图结构, 发现中心点和六边形晕的亮度有明显的差异, 说明中心点和六边形晕可能处的等离子体状态不同。 利用发射光谱法, 详细研究了该六边形晕斑图结构的中心点和六边形晕的等离子体参数随压强的变化关系。 实验根据氮分子第二正带系(C3Πu→B3Πg)谱线计算了中心点和六边形晕的分子振动温度; 通过氮分子离子(391.4 nm) 与氮分子(394.1nm)谱线强度比, 反映中心点和六边形晕的电子平均能量; 利用氩原子696.5 nm(2P2→1S5)谱线的展宽, 研究了电子密度。 实验结果表明: 六边形晕斑图主要范围是氩气含量从60%~75%、 压强从30~46 kPa。 在相同的压强条件下, 六边形晕比中心点的分子振动温度、 电子平均能量均要高。 随着压强从30 kPa逐渐升高到46 kPa, 中心点和六边形晕的分子振动温度、 电子平均能量是逐渐增大的。 在相同的压强条件下, 六边形晕比中心点的谱线展宽要大, 且随着压强的升高而增加, 表明电子密度随着压强的增大而升高。 六边形晕和中心点的等离子体的状态不同, 说明二者放电机制上的差异。 进一步采用高速照相机对斑图的电流脉冲进行分脉冲瞬时拍摄, 发现中心点是由先放电的体放电形成, 而六边形晕是由放电晚于体放电的沿面放电形成。
介质阻挡放电 六边形晕斑图 分子振动温度 电子平均能量 电子密度 高速照相机 Dielectric barrier discharge The spot-halo hexagon pattern Molecule vibrational temperature Electron average energy Electron density The high speed camera 
光谱学与光谱分析
2016, 36(6): 1877
作者单位
摘要
河北大学物理科学与技术学院, 河北 保定071002
大气压空气中介质阻挡均匀放电产生的等离子体在工业领域具有广阔的应用前景, 为研究其产生条件及机理, 利用微间隙介质阻挡放电装置, 在大气压空气中实现了均匀放电。 电学实验结果表明, 低电压时电流波形在电压每半个周期存在若干个脉冲宽度很小的脉冲, 肉眼观察到大量的微放电丝, 随着外加电压增加, 放电功率逐渐增加, 放电空间内微放细丝增多。 当电压增大到9.2 kV时, 电流波形在电压每半个周期只存在一个宽度较大(约5.5 μs)强度较强的脉冲, 观察不到微放电丝, 微放电最终扩展叠加形成均匀放电。 采集了光谱范围为330~420 nm的发射光谱, 氮分子第二正带系337.1 nm的谱线强度明显比氮分子离子第一负带系391.4 nm的强。 将337.1 nm谱线的强度归一, 391.4 nm谱线的强度即反应了电子平均能量的大小, 同时拟合计算了反映分子内部能量的氮分子振动温度。 结果表明电子平均能量和分子内部能量都随外加电压的增加而降低。 表明放电空间电场能量较低时不容易形成丝状放电, 均匀放电模式中电子平均能量比微放电丝放电模式中的低。 这些结果对于空气中介质阻挡均匀放电在工业应用方面具有一定的指导意义。
微间隙 均匀放电 放电功率 电子平均能量 Micro-gap Uniform discharge Discharge power Electron average energy 
光谱学与光谱分析
2015, 35(10): 2703

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!