作者单位
摘要
1 北京大学 深圳研究生院 信息工程学院, 广东 深圳 518055
2 北京信息科技大学 信息微系统研究所, 北京 100101
3 北京大学 微纳电子学研究院, 北京 100871
随着系统级封装(SIP)所容纳的电子元器件和集成密度迅速增加, 传统的散热方法(热通孔、风冷散热等)越来越难以满足系统级封装的热管理需求。低温共烧陶瓷(LTCC)作为常见的封装基板材料之一, 设计并研制了三种内嵌于LTCC基板的微流道, 其中包括直排型、蛇型和螺旋型微流道(高度为0.3 mm, 宽度分别为0.4, 0.5和0.8 mm)。通过数值仿真和红外热像仪测试相结合的方式分析了微流道网络结构、流体质量流量、雷诺数、材料热导率对内嵌微流道LTCC基板换热性能的影响, 实验结果表明: 当去离子水的流量为10 mL/min, 热源等效功率为2 W/cm2时, 直排型微流道的LTCC基板最高温度在3.1 kPa输入泵压差下能降低75.4 ℃, 蛇型微流道的LTCC基板最高温度在85.8 kPa输入泵压差下能降低80.2 ℃, 螺旋型微流道的LTCC基板最高温度在103.1 kPa输入泵压差下能降低86.7 ℃。在三种微流道中, 直排型微流道具有最小的雷诺数, 在相同的输入泵压差下有最好的散热性能。窄的直排型微流道(0.4 mm)在相同的流道排布密度和流体流量时比宽的微流道(0.8 mm)能多降低基板温度10 ℃。此外, 提高封装材料的热导率有助于提高微流道的换热性能。
低温共烧陶瓷 微流道 传热性能 强制对流换热 heat transfer LTCC laminates microchannel liquid cooling 
强激光与粒子束
2016, 28(6): 064126

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!