何建国 1,2,3李明 4貊泽强 1,2,3王金舵 1,2[ ... ]凡炼文 5
作者单位
摘要
1 中国科学院空天信息创新研究院,北京 100094
2 中国科学院大学,北京 100049
3 中国科学院计算光学成像技术重点实验室,北京 100094
4 中国科学院西安光学精密机械研究所,陕西 西安 710119
5 中国科学院空间应用工程与技术中心,北京 100094
液体强制对流换热因具有较高的可靠性和性能稳定性而被广泛使用于高功率板条激光介质介质的制冷,但沿流场方向产生的温度梯度会显著改变激光介质的热应力状态而带来不良影响。提出了基于冷却流场与目标温度匹配控制思路的双大面侧泵激光介质纵向强制对流冷却方案(Longitudinal forced convection),利用非定常边界条件的流?固耦合有限元仿真方法对比了全腔浸泡对流冷却(Cavity forced convection)、微通道传导冷却技术方案(Micro-channel conduction),针对入口流量、流场状态、流道壁面条件等因素进行了详细研究。在30 L/min入口流量下,该方案热交换区域固液界面平均对流换热系数达104 W·m?2·K?1量级,且均匀分布。此外,通过改变壁面粗糙程度能够获得更高的对流换热系数。根据设计结果研制了一套板条激光放大器,实验监测点的温度结果与模拟仿真预测结果相吻合,冷却性能达到预期。
热管理 板条晶体 计算流体力学 强制对流换热 温度分布 thermal management slab crystal computational fluid dynamics forced convection heat transfer temperature distribution 
红外与激光工程
2020, 49(9): 20200556
作者单位
摘要
1 北京大学 深圳研究生院 信息工程学院, 广东 深圳 518055
2 北京信息科技大学 信息微系统研究所, 北京 100101
3 北京大学 微纳电子学研究院, 北京 100871
随着系统级封装(SIP)所容纳的电子元器件和集成密度迅速增加, 传统的散热方法(热通孔、风冷散热等)越来越难以满足系统级封装的热管理需求。低温共烧陶瓷(LTCC)作为常见的封装基板材料之一, 设计并研制了三种内嵌于LTCC基板的微流道, 其中包括直排型、蛇型和螺旋型微流道(高度为0.3 mm, 宽度分别为0.4, 0.5和0.8 mm)。通过数值仿真和红外热像仪测试相结合的方式分析了微流道网络结构、流体质量流量、雷诺数、材料热导率对内嵌微流道LTCC基板换热性能的影响, 实验结果表明: 当去离子水的流量为10 mL/min, 热源等效功率为2 W/cm2时, 直排型微流道的LTCC基板最高温度在3.1 kPa输入泵压差下能降低75.4 ℃, 蛇型微流道的LTCC基板最高温度在85.8 kPa输入泵压差下能降低80.2 ℃, 螺旋型微流道的LTCC基板最高温度在103.1 kPa输入泵压差下能降低86.7 ℃。在三种微流道中, 直排型微流道具有最小的雷诺数, 在相同的输入泵压差下有最好的散热性能。窄的直排型微流道(0.4 mm)在相同的流道排布密度和流体流量时比宽的微流道(0.8 mm)能多降低基板温度10 ℃。此外, 提高封装材料的热导率有助于提高微流道的换热性能。
低温共烧陶瓷 微流道 传热性能 强制对流换热 heat transfer LTCC laminates microchannel liquid cooling 
强激光与粒子束
2016, 28(6): 064126

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!