作者单位
摘要
1 中国工程物理研究院 流体物理研究所 冲击波物理与爆轰物理重点实验室,四川 绵阳 621900
2 中国矿业大学(北京)力学与建筑工程学院,北京 100083
利用分子动力学模拟研究了完美单晶铁以及含不同尺寸孔洞的单晶铁相变过程,分析了孔洞尺寸对相变过程的影响。模拟结果表明:孔洞的存在降低了相变的阈值应力,加速了相变区域成核速率和相变传播速率;随着孔洞直径的增大,相变的阈值应力逐渐降低;孔洞也改变了相变的初始成核区域,使相变区域呈现出一个蝴蝶状的形貌;孔洞反射的稀疏波对相变成核区域的影响随孔洞体积增大而增大,导致孔洞周围出现大量的无序结构原子;孔洞体积对相变的影响也体现在了粒子速度空间分布上,压缩过程中孔洞周围出现的大量“热点”导致了更低的粒子速度空间分布。
相变 激光加载 分子动力学模拟 孔洞体积 单晶铁 缺陷 phase transformation laser shock loading molecular dynamics simulation void volume single crystal iron defect 
强激光与粒子束
2009, 21(7): 1074
作者单位
摘要
1 中国工程物理研究院流体物理研究所,冲击波物理与爆轰物理实验室,四川,绵阳,621900
2 宁波大学工学院力学与材料科学研究中心,浙江,宁波315211
3 Laboratoire de Combustion et de Détonique, 1 Av.Clément Ader, Chasseneuil Cedex 86961, France
4 Advanced Materials Laboratory, National Institute of Materials Science, Tsukuba 305-0044, Japan
采用改进的损伤度函数模型,该模型将材料损伤断裂看作为一种典型的逾渗过程,根据逾渗临界准则,采用应力松弛函数来描述损伤后期微损伤之间的连通效应,考虑了损伤对材料本构的影响,对纯铝在强激光辐照下的动态力学响应和层裂破实验进行了数值模拟.通过高斯分布激光脉冲压力加载,计算分析了激光与样品相互作用.计算结果表明:损伤演化明显地改变了材料力学响应以及样品中波传播特性,计算较精确地再现了实测自由面速度随时间的变化过程.根据计算结果分析了损伤演化过程,485 μm厚样品中损伤的分布主要集中在距离样品后界面100 μm 范围内,具有明显的损伤局部化特征,最大损伤值为11.2%.
激光加载 损伤度函数 层裂 数值计算 Laser shock loading Damage function model Spallation Numerical simulation 
强激光与粒子束
2005, 17(9): 1281
作者单位
摘要
1 中国工程物理研究院 流体物理研究所 冲击波物理与爆轰物理实验室,四川 绵阳 621900
2 宁波大学 工学院力学与材料科学研究中心,浙江 宁波315211
3 Laboratoire de Combustion et de Détonique,1 Av.Clément Ader,Chasseneuil Cedex 86961,France
4 Advanced Materials Laboratory,National Institute of Materials Science,Tsukuba 305-0044,Japan
采用速度干涉(VISAR)测试技术,对强激光辐照下纯铝的动态力学响应和层裂特性进行了实验测量和分析.样品厚度分别为200 μm 和485 μm,激光脉冲的半高宽约为10 ns,功率密度变化范围为1010~1011 W·cm-2.实测了样品自由面速度波形,反映了强激光加载作用下材料损伤演化过程以及损伤对材料动态响应的影响.计算得到了冲击波强度(2.0~13.4 GPa) 和不同拉伸应变率下铝的层裂强度(1.6~2.3 GPa).在所采用的实验条件和1维近似下,激光辐照产生的冲击波强度与激光功率密度之间成线性关系.最后讨论了层裂强度与拉伸应变率之间的关系,显示层裂强度随着拉伸应变率的增加而增大.
激光加载 损伤 层裂 动力学响应 Laser shock loading Damage Spallation Mechanical behavior 
强激光与粒子束
2005, 17(7): 966

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!