薛平 *
作者单位
摘要
清华大学物理系低维量子物理国家重点实验室, 北京 100084
介绍了光学相干层析成像在不断提升其性能方面的一些研究,其中主要包括在成像的分辨率、成像速度、成像探头等基础核心指标方面大幅提升的代表性工作。综述了清华大学物理系近二十多年来在光学相干层析成像研究方面的一系列重要进展,包括取得了纵向分辨率为0.64 μm的高分辨率成像、E3.5长时间细胞活体的亚细胞分辨成像,成功研制了速度高达40 MHz的高速扫频激光器,实现了基于光计算的每秒1000万次轴向线扫描的超高速实时光学成像信息处理等。
成像系统 光学相干层析成像 光纤激光器 光在组织中传播 光数据处理 
中国激光
2021, 48(15): 1517001
作者单位
摘要
中国海洋大学工程学院, 山东 青岛 266100
采用非平行双目视觉测量系统对水下目标进行测量时,水对光线的折射使传统外极线约束关系不再成立,导致系统的测量误差较大。为了进一步提高系统的测量精度,提出了一种基于多线结构光的水下双目视觉测量方法。该方法基于水下非平行双目视觉测量系统模型和光线追踪原理建立了水下外极线离散曲线模型,并提出了一种用于特征点匹配的水下外极线匹配方法,以实现水下目标的三维测量。实验结果表明,本方法可以有效实现多结构光的光条立体匹配,提高水下目标的测量精度。
测量与计量 机器视觉 组织中光传播 光路折射 
中国激光
2021, 48(13): 1304003
作者单位
摘要
莆田学院工程实训中心, 福建 莆田 351100
依据组织学特征,构建静脉及其周围组织三维模型,通过扩散近似理论模拟激光腔内辐照静脉的光分布,采用有限元法求解生物热方程,获得组织各处温度分布,并根据Arrhenius方程计算激光辐照引起的损伤。比较研究了放射状光纤与放射状二环光纤的光热响应,探讨了激光功率、回拉速度、线性静脉内能量密度、静脉直径对放射状二环光纤治疗效果的影响。结果表明:采用放射状二环光纤辐照组织,各处温度较放射状光纤低,可减少光纤与血管壁的粘附;同样的线性静脉内能量密度辐照组织,激光功率较低的治疗方案安全性较高;静脉直径越大,需更高的线性静脉内能量密度才能达到治疗效果。提出的模型有利于更好地理解激光腔内治疗的作用机理。
医用光学 光在组织中传播 腔内激光治疗 有限元法 放射状二环光纤 
中国激光
2020, 47(12): 1207001
Author Affiliations
Abstract
Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education & School of Life Science and Technology, Xidian University, Xi’an 710071, China
Simplified spherical harmonics approximation (SPN) equations are widely used in modeling light propagation in biological tissues. However, with the increase of order N, its computational burden will severely aggravate. We propose a graphics processing unit (GPU) accelerated framework for SPN equations. Compared with the conventional central processing unit implementation, an increased performance of the GPU framework is obtained with an increase in mesh size, with the best speed-up ratio of 25 among the studied cases. The influence of thread distribution on the performance of the GPU framework is also investigated.
170.3660 Light propagation in tissues 170.7050 Turbid media 200.4960 Parallel processing 
Chinese Optics Letters
2016, 14(7): 071701
Author Affiliations
Abstract
1 Department of Mechanical &
2 Electrical Engineering, Xiamen University, Xiamen 361005, China
3 Department of Orthopaedics, Xiamen University, Affiliated ZhongShan Hospital, Xiamen 361005, China
It is highly necessary to study the phenomenon of photon migration in the knee joint for the non-invasive near-infrared optical early diagnosis of the osteoarthritis of the knee. We investigate the migration trace and distribution rule of the photons in knee layered structure, which are simulated by the Monte-Carlo modeling. The proportion of photons which collide with bone tissue then migrate out of the muscle tissue and photons directly migrate out of muscle tissue is calculated. For analyzing the signal-to-noise ratio to determine the accurate position of the detector, we perform quantitative evaluations of distribution of photons, as well as qualitative assessments of the distribution of photons.
170.3660 Light propagation in tissues 170.5280 Photon migration 170.6930 Tissue 
Chinese Optics Letters
2014, 12(s2): S21701
Author Affiliations
Abstract
1 College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
2 Tianjin Key Laboratory of Biomedical Detecting Techniques and Instruments, Tianjin 300072, China
The accuracy of the background optical properties has a considerable effect on the quality of reconstructed images in near-infrared functional brain imaging based on continuous wave diffuse optical tomography (CW-DOT). We propose a region stepwise reconstruction method in CW-DOT scheme for reconstructing the background absorption and reduced scattering coefficients of the two-layered slab sample with the known geometric information. According to the relation between the thickness of the top layer and source–detector separation, the conventional measurement data are divided into two groups and are employed to recon-struct the top and bottom background optical properties, respectively. The numerical simulation results demonstrate that the proposed method can reconstruct the background optical properties of two-layered slab sample effectively. The region-of-interest reconstruction results are better than those of the conventional simultaneous reconstruction method.
170.3880 Medical and biological imaging 170.6960 Tomography 170.5280 Photon migration 170.3660 Light propagation in tissues 170.3010 Image reconstruction techniques 
Chinese Optics Letters
2014, 12(11): 111702
Author Affiliations
Abstract
Laminar optical tomography (LOT) is a new mesoscopic functional optical imaging technique. Currently, the forward problem of LOT image reconstruction is generally solved on the basis of Monte-Carlo (MC) methods. However, considering the nonlinear nature of the image reconstruction in LOT with the increasing number of source positions, methods based on MC take too much computation time. This letter develops a fast image reconstruction algorithm based on perturbation MC (pMC) for reconstructing the absorption or scattering image of a slab medium, which is suitable for LOT or other functional optical tomography system with narrow source-detector separation and dense sampling. To calculate the pMC parameters, i.e., the path length passed by a photon and the collision numbers experienced in each voxel with only one baseline MC simulation, we propose a scheme named as the trajectory translation and target voxel regression (TT&TVR) based on the reciprocity principle. To further speed up the image reconstruction procedure, the weighted average of the pMC parameters for all survival photons is adopted and the region of interest (ROI) is extracted from the raw data to save as the prior information of the image reconstruction. The method is applied to the absorption reconstruction of the layered inhomogeneous media. Results demonstrate that the reconstructing time is less than 20 s with the X-Y section of the sample subdivided into 50 \times 50 voxels, and the target size quantitativeness ratio can be obtained in a satisfying accuracy in the source-detector separations of 0.4 and 1.25 mm, respectively.
170.3880 Medical and biological imaging 170.6960 Tomography 170.5280 Photon migration 170.3660 Light propagation in tissues 170.3010 Image reconstruction techniques 
Chinese Optics Letters
2014, 12(3): 031702
Author Affiliations
Abstract
Bessel beam propagation in scattering media is simulated using the angular spectrum method combined with slice-by-slice propagation model. Generating Bessel beams with a spatial light modulator, which provides a means to adjust flexibly the parameters of the Bessel beam, allows us to validate the simulation results experimentally. The study reveals that the self-reconstructing length changes oppositely with the axicon angle (i.e., the larger the axicon angle, the shorter the self-reconstructing length). The radius of the incident beam has little influence on the self-reconstruction of the Bessel beam central lobe.
260.1960 Diffraction theory 170.3660 Light propagation in tissues 290.7050 Turbid media 
Chinese Optics Letters
2013, 11(11): 112601
Author Affiliations
Abstract
The fluorescence power from biological tissue excited by a femtosecond laser pulse compared with excitation power does not appear to obey a simple quadratic relationship given by the steady non-linear theory. A more reliable analysis is developed based on transient two-photon absorption because the response time of two-photon absorption is longer than the width of a femtosecond pulse. Good agreement is obtained between the theoretical analysis and the experimental results of fluorescence power versus excitation power. This letter offers potential value to non-linear optics in biological tissues.
190.4180 Multiphoton processes 260.2510 Fluorescence 170.3660 Light propagation in tissues 
Chinese Optics Letters
2012, 10(5): 051901
Author Affiliations
Abstract
A finite element method computation model for analyzing optothermal interaction of polychromatic light and biology tissue is proposed and proven by experiment. A continuous xenon lamp is employed as an example. First, the spectral energy distribution of the xenon lamp is measured and found to be equivalent to a series of quasi-chromatic light with different central wavelengths, different energies, and certain bandwidth. Next, according to the reported thermal and optical parameters of porcine skin and porcine liver, the temporal temperature distributions of these tissues irradiated by each quasi-chromatic light are simulated. Then, the thermal effect is superimposed to obtain the whole optothermal temporal temperature distribution. Moreover, the optothermal response experiments of fresh porcine skin and porcine liver tissues irradiated by continuous xenon lamp are carried out. The results of the simulation and experiment are analyzed and compared, and are found to be commendably matched.
170.1020 Ablation of tissue 170.3660 Light propagation in tissues 
Chinese Optics Letters
2012, 10(1): 011701

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!