作者单位
摘要
烟台大学光电信息科学技术学院, 山东 烟台 264005
传统的漫射方程均假设生物组织在纵向上是半无限厚的,横向上是无限大的。针对某些在横向上不是无限大的生物组织(如前臂和手指),建立了一个任意多层矩形生物组织漫射模型,该模型假设生物组织在纵向上是半无限厚的、多层的,在横向上是个矩形。在矩形边界条件下,根据光在生物介质中传播的漫射方程,结合外推边界条件,建立并给出了光在半无限厚稳态多层矩形介质中的漫射方程的精确解,利用建立的模型计算了空间分辨漫反射,同时编写相应的蒙特卡罗模拟程序,验证方程的正确性。建立的方程不但能解决横向上是矩形的介质问题,还能解决横向上无限大、纵向上半无限厚的介质问题,更能解决在横向上x 或y 轴之一是无限大、另一个轴是有限大小的组织问题。
生物光学 光子迁移 漫射方程 蒙特卡罗模拟 稳态 
光学学报
2016, 36(3): 0317003
Author Affiliations
Abstract
1 Department of Mechanical &
2 Electrical Engineering, Xiamen University, Xiamen 361005, China
3 Department of Orthopaedics, Xiamen University, Affiliated ZhongShan Hospital, Xiamen 361005, China
It is highly necessary to study the phenomenon of photon migration in the knee joint for the non-invasive near-infrared optical early diagnosis of the osteoarthritis of the knee. We investigate the migration trace and distribution rule of the photons in knee layered structure, which are simulated by the Monte-Carlo modeling. The proportion of photons which collide with bone tissue then migrate out of the muscle tissue and photons directly migrate out of muscle tissue is calculated. For analyzing the signal-to-noise ratio to determine the accurate position of the detector, we perform quantitative evaluations of distribution of photons, as well as qualitative assessments of the distribution of photons.
170.3660 Light propagation in tissues 170.5280 Photon migration 170.6930 Tissue 
Chinese Optics Letters
2014, 12(s2): S21701
Author Affiliations
Abstract
1 College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
2 Tianjin Key Laboratory of Biomedical Detecting Techniques and Instruments, Tianjin 300072, China
The accuracy of the background optical properties has a considerable effect on the quality of reconstructed images in near-infrared functional brain imaging based on continuous wave diffuse optical tomography (CW-DOT). We propose a region stepwise reconstruction method in CW-DOT scheme for reconstructing the background absorption and reduced scattering coefficients of the two-layered slab sample with the known geometric information. According to the relation between the thickness of the top layer and source–detector separation, the conventional measurement data are divided into two groups and are employed to recon-struct the top and bottom background optical properties, respectively. The numerical simulation results demonstrate that the proposed method can reconstruct the background optical properties of two-layered slab sample effectively. The region-of-interest reconstruction results are better than those of the conventional simultaneous reconstruction method.
170.3880 Medical and biological imaging 170.6960 Tomography 170.5280 Photon migration 170.3660 Light propagation in tissues 170.3010 Image reconstruction techniques 
Chinese Optics Letters
2014, 12(11): 111702
Author Affiliations
Abstract
Laminar optical tomography (LOT) is a new mesoscopic functional optical imaging technique. Currently, the forward problem of LOT image reconstruction is generally solved on the basis of Monte-Carlo (MC) methods. However, considering the nonlinear nature of the image reconstruction in LOT with the increasing number of source positions, methods based on MC take too much computation time. This letter develops a fast image reconstruction algorithm based on perturbation MC (pMC) for reconstructing the absorption or scattering image of a slab medium, which is suitable for LOT or other functional optical tomography system with narrow source-detector separation and dense sampling. To calculate the pMC parameters, i.e., the path length passed by a photon and the collision numbers experienced in each voxel with only one baseline MC simulation, we propose a scheme named as the trajectory translation and target voxel regression (TT&TVR) based on the reciprocity principle. To further speed up the image reconstruction procedure, the weighted average of the pMC parameters for all survival photons is adopted and the region of interest (ROI) is extracted from the raw data to save as the prior information of the image reconstruction. The method is applied to the absorption reconstruction of the layered inhomogeneous media. Results demonstrate that the reconstructing time is less than 20 s with the X-Y section of the sample subdivided into 50 \times 50 voxels, and the target size quantitativeness ratio can be obtained in a satisfying accuracy in the source-detector separations of 0.4 and 1.25 mm, respectively.
170.3880 Medical and biological imaging 170.6960 Tomography 170.5280 Photon migration 170.3660 Light propagation in tissues 170.3010 Image reconstruction techniques 
Chinese Optics Letters
2014, 12(3): 031702
Author Affiliations
Abstract
1 Life Sciences Research Center, School of Life Sciences and Technology, Xidian University, Xi'an 710071, China
2 Institute of Automation, Chinese Academy of Science, Beijing 100190, China
Monte Carlo (MC) method is a statistical method for simulating photon propagation in media in the optical molecular imaging field. However, obtaining an accurate result using the method is quite time-consuming, especially because the boundary of the media is complex. A voxel classification method is proposed to reduce the computation cost. All the voxels generated by dividing the media are classified into three types (outside, boundary, and inside) according to the position of the voxel. The classified information is used to determine the relative position of the photon and the intersection between photon path and media boundary in the MC method. The influencing factors and effectiveness of the proposed method are analyzed and validated by simulation experiments.
蒙特卡罗 体素分类 复杂介质 170.3660 Light propagation in tissues 170.5280 Photon migration 
Chinese Optics Letters
2011, 9(4): 041701
Author Affiliations
Abstract
Britton Chance Center for Biomedical Photonics Wuhan National Laboratory for Optoelectronics Huazhong University of Science and Technology Wuhan 430074, P. R. China
The Monte Carlo code MCML (Monte Carlo modeling of light transport in multi-layered tissue) has been the gold standard for simulations of light transport in multi-layer tissue, but it is ineffective in the presence of three-dimensional (3D) heterogeneity. New techniques have been attempted to resolve this problem, such as MCLS, which is derived from MCML, and tMCimg, which draws upon image datasets. Nevertheless, these approaches are insufficient because of their low precision or simplistic modeling. We report on the development of a novel model for photon migration in voxelized media (MCVM) with 3D heterogeneity. Voxel crossing detection and refractive-index-unmatched boundaries were considered to improve the precision and eliminate dependence on refractive-index-matched tissue. Using a semi-infinite homogeneous medium, steady-state and time-resolved simulations of MCVM agreed well with MCML, with high precision (~100%) for the total diffuse reflectance and total fractional absorption compared to those of tMCimg (<70%). Based on a refractive-index-matched heterogeneous skin model, the results of MCVM were found to coincide with those of MCLS. Finally, MCVM was applied to a two-layered sphere with multi-inclusions, which is an example of a 3D heterogeneous media with refractive-index-unmatched boundaries. MCVM provided a reliable model for simulation of photon migration in voxelized 3D heterogeneous media, and it was developed to be a flexible and simple software tool that delivers high-precision results.
Monte Carlo voxel photon migration light transport tissue optics 
Journal of Innovative Optical Health Sciences
2010, 3(2): 91–102
Author Affiliations
Abstract
Department of Biomedical Engineering Catholic University of America Washington DC 20064, USA
To provide a computational efficient forward model with moderate accuracy for rapid 3D optical tomography in small volumes, radiative transport in the delta-P1 approximation combined with the approximation of the reciprocity was examined. Perturbations of optical signals caused by absorption and fluorescence heterogeneities submerged in a resin-based liquid phantom with background parameters close to rat brain tissues were measured using a recently constructed laminar optical tomography system. These measured perturbations were used to examine the theoretically calculated fluence perturbations based on the delta-P1 approximation and the reciprocity approximation. Results show that the errors between the predicted and measured data are acceptable, especially for fluorescence perturbations.
Photon migration tomography fluorescence delta-P1 approximation reciprocity approximation 
Journal of Innovative Optical Health Sciences
2009, 2(2): 149–163
Author Affiliations
Abstract
Key Laboratory of Opto-Electronic Science and Technology for Medicine Fujian Normal University, Ministry of Education, Fujian Provincial Key Lab of Photonic Technology, Fuzhou 350007
Monte Carlo algorithm and Stokes-Mueller formalism are used to simulate the propagation behavior of polarized light in turbid media. The influence of single scattering and multiple scattering on backscattered Mueller matrix in turbid media is discussed. Single and double scattering photons form the major part of backscattered polarization patterns, while multiple scattering photons present more likely as background. Further quantitative analyses show that single scattering approximation and double scattering approximation are quite accurate when discussing the polarization patterns near the incident point.
光子传输 偏振 后向散射 散射介质 170.5280 Photon migration 260.5430 Polarization 290.1350 Backscattering 290.7050 Turbid media 
Chinese Optics Letters
2009, 7(1): 0164
Author Affiliations
Abstract
State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800
A new method of Monte Carlo simulation is developed to simulate the photon migration path in a scattering medium after an ultrashort-pulse laser beam comes into the medium. The most probable trajectory of photons at an instant can be obtained with this method. How the photon migration paths are affected by the optical parameters of the scattering medium is analyzed. It is also concluded that the absorption coefficient has no effect on the most probable trajectory of photons.
蒙特卡罗 混浊介质 光子路径 散射 170.7050 Turbid media 170.5280 Photon migration 290.0290 Scattering 
Chinese Optics Letters
2008, 6(7): 530
Author Affiliations
Abstract
College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072
Our preliminary results on two-dimensional (2D) optical tomographic imaging of hemodynamic changes in a preterm infant brain are reported. We use the established 16-channel time-correlated single photon counting system for the detection and generalized pulse spectrum technique based algorithm for the image reconstruction. The experiments demonstrate that diffuse optical tomography may be a potent means for investigating brain functions and neural development of infant brains in the perinatal period.
医学成像 生物成像 光子迁移 图像重建 血液/组织成分监测 光学层析 170.3880 Medical and biological imaging 170.5280 Photon migration 170.3010 Image reconstruction techniques 170.1470 Blood or tissue constituent monitoring 
Chinese Optics Letters
2007, 5(8): 472

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!