Author Affiliations
Abstract
1 Department of Applied Physics, Xi’an Jiaotong University, Xi’an 710049, China
2 Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA
The spin Hall effect of light (SHEL) can be observed by the dark strip resulting from weak measurement. We find that the SHEL of a partially coherent beam (PCB) has a similar phenomenon as well. However, the dark strip in the SHEL of a PCB cannot be explained by considering the beam as an assemblance of coherent speckles. Also, the dark strip in a PCB is not purely dark. By analyzing the autocorrelation, we show that the SHEL of a PCB is the result of overlapping coherent speckles’ SHEL. We further prove our conclusion by adjusting convergence and incident angles. Finally, we develop a qualitative theory to clarify the SHEL of a PCB.
240.3695 Linear and nonlinear light scattering from surfaces 030.1640 Coherence 070.0070 Fourier optics and signal processing 
Chinese Optics Letters
2017, 15(2): 022401
Author Affiliations
Abstract
1 Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064, China
2 College of Physical Science and Technology, Sichuan University, Chengdu 610064, China
In this Letter, a method for detecting the focused beam waist of lasers is proposed by using weak measurements based on the so-called weak-value amplification. We establish a propagation model to describe the quantitative relation between the beam waist and the amplified shift of the spin Hall effect of light (SHEL), which is sensitive to the variation of the beam waist. We experimentally measure the amplified shift corresponding to a different beam waist and the experimental data agrees well with theoretical calculation. These results confirm the rationality and feasibility of our method.
240.3695 Linear and nonlinear light scattering from surfaces 260.5430 Polarization 140.3295 Laser beam characterization 
Chinese Optics Letters
2015, 13(11): 112401

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!