作者单位
摘要
1 燕山大学信息科学与工程学院, 河北 秦皇岛 066004
2 燕山大学电气工程学院, 河北 秦皇岛 066004
石油类混合油液的组分检测是三维荧光光谱领域重要的研究内容, 由于实际获得的混合油液三维荧光光谱数据存在不同组分光谱重叠严重、 数据三线性较差等问题, 通过平行因子算法解析时, 会出现解析谱与标准谱差异过大或者不能正确判断油种的情况。 在验证三维荧光偏导数光谱应用平行因子算法具有可行性的基础上, 将三维荧光偏导数光谱与平行因子算法结合, 能够提高平行因子算法得到的混合油解析谱与标准谱的拟合程度, 实现石油类混合油液组分的准确检测。 首先, 以十二烷基硫酸钠(SDS)溶液作为溶剂, 配制航空煤油、 润滑油不同浓度的纯油溶液各15份, 将航空煤油、 润滑油按照不同浓度比配制9份混合油溶液; 并利用FS920荧光光谱仪得到39份三维荧光光谱数据。 然后, 对三维荧光光谱数据进行预处理: 通过扣除空白法去除拉曼散射, 并将瑞利散射区域扣除, 再利用分段三次hermite插值方法对扣除区域进行插值; 利用小波变换阈值去噪法去除光谱数据中的高频噪声, 得到预处理完成后的三维荧光光谱数据。 最后, 利用Savitzky-Golay拟合求导方法求三维荧光光谱的一阶偏导数光谱, 并利用平行因子算法对三维荧光光谱和三维荧光偏导数光谱进行解析。 将解析谱与纯油标准谱进行比较, 实验结果表明: 利用平行因子算法对混合油液的三维荧光光谱进行解析时, 得到的润滑油解析结果较好, 但航空煤油的解析结果存在较大问题。 而三维荧光偏导数光谱经平行因子算法解析后, 在保证润滑油解析结果的同时, 显著提高了航空煤油的解析结果: 航空煤油解析谱与标准谱之间的相关系数提升了12.0%(发射光谱)、 6.7%(激发光谱), 均方根误差减少了70.4%(发射光谱)、 20.6%(激发光谱)。 在三维荧光光谱数据三线性较差的情况下, 三维荧光偏导数光谱结合平行因子分析方法优于三维荧光光谱结合平行因子分析方法, 实现了对混合油液组分准确检测的目的。
三维荧光光谱 油种检测 偏导数光谱 平行因子算法 Three-dimensional fluorescence spectroscopy Mixed oil detection Partial derivative spectroscopy Parallel factor algorithm 
光谱学与光谱分析
2021, 41(11): 3506
作者单位
摘要
1 燕山大学电气工程学院, 河北 秦皇岛 066004
2 Department of Telecommunications and Information Processing, Ghent University, B-9000 Ghent, Belgium
3 燕山大学信息科学与工程学院, 河北 秦皇岛 066004
石油作为一种重要的化石能源, 是人类社会生产活动中不可缺少的一部分。 石油在被人们开采、 使用的过程中不可避免地会发生泄漏, 泄漏的石油会给生态环境带来严重的威胁。 因此, 在石油泄漏后需要及时对其进行处理, 而其前提是能够准确识别石油种类。 由于石油中多种物质具有荧光特性, 因此应用荧光光谱法可对石油进行有效检测。 但石油所含组分较多, 使得其光谱信息重叠严重, 识别困难。 而三阶校正方法具有“三阶优势”, 可以分辨高共线性、 高噪声水平下的数据。 其中, 三阶校正中的交替加权残差约束四线性分解(AWRCQLD)算法具有收敛速度快、 对组分数不敏感等优点; 因此, 利用三维荧光光谱技术结合AWRCQLD算法, 对混合油液进行检测。 首先, 配制3种盐度条件下的十二烷基硫酸钠(SDS)溶剂; 并在每种盐度条件下分别将航空煤油和润滑油按照不同浓度比混合, 最终得到24个校正样本和9个预测样本。 然后, 使用FLS920荧光光谱仪对实验样本进行光谱数据采集。 其次, 使用扣除空白法去除光谱中的散射, 并通过核一致诊断法判断混合油中的组分数。 最后, 用AWRCQLD算法对四维光谱矩阵进行解析。 研究结果表明, 在0~20盐度范围内, 随着盐度的增加, 航空煤油的荧光强度先减小后增大, 润滑油的荧光强度先增大后减小; 混合油解析光谱曲线分别与航空煤油及润滑油的实际光谱曲线重合度良好; 经AWRCQLD算法解析后得到的航空煤油的回收率范围为100.2%~109%, 均方根误差为0.002 1 mg·mL-1; 润滑油的回收率范围为91.8%~109.3%, 均方根误差为0.004 8 mg·mL-1。 通过引入盐度作为新一维度的数据, 从而将三维光谱数据阵扩展到相应的四维光谱数据阵。 并利用AWRCQLD算法对四维光谱数据阵进行了解析, 实现了在不同盐度条件下对混合油的定性和定量分析。 同时, 为不同盐度条件下的混合油液检测提供了参考。
三维荧光光谱 海水盐度 混合油检测 3D fluorescence spectroscopy AWRCQLD AWRCQLD Seawater salinity Mixed oil detection 
光谱学与光谱分析
2020, 40(6): 1769
作者单位
摘要
1 燕山大学电气工程学院, 河北 秦皇岛 066004
2 燕山大学信息科学与工程学院, 河北 秦皇岛 066004
3 北京化工大学信息科学与技术学院, 北京 100029
石油作为重要的能源和工业原料, 在造福人类社会的同时, 其引起的环境污染问题日益严重。 因此针对混合油液的快速、 准确检测成为鉴别溢油来源和保护生态环境的重要内容。 石油类物质一般由具有较强荧光特性的芳香烃成分及其衍生物组成, 荧光光谱分析技术以其灵敏度高、 分析速度快和受风化影响程度小等优点成为了混合油液检测的重要手段之一, 并与二阶校正和三阶校正的各类算法相结合取得了较好的成分鉴别和浓度预测效果。 但二阶校正算法普遍存在对噪声的容忍能力弱和对组分数敏感、 收敛速度慢等不足, 限制了在实际混合油液检测中的应用。 针对上述存在的问题, 将三维荧光光谱技术和交替加权残差约束四线性分解(AWRCQLD)算法相结合, 提出一种用于混合油液检测的新方法。 首先以乙醇作为溶剂, 将航空煤油和润滑油按不同浓度比配制7个校正样本、 4个预测样本和3个空白样本; 然后利用FLS920荧光光谱仪采集拟进行成分检测的混合油液在不同实验温度条件下共42个样本的荧光光谱数据, 并通过空白扣除的方法消除散射的干扰; 再利用核一致诊断法和残差分析法估计出最佳的组分数; 最后分别利用AWRCQLD算法、 4阶平行因子(4-PARAFAC)算法和二阶校正算法解析样本的荧光光谱数据, 做出混合油液样本的定性鉴别和定量预测。 研究结果表明, 经AWRCQLD算法解析后得到的航空煤油预测样本的回收率为96.7%~102.7%、 预测均方根误差为0.015 mg·mL-1; 润滑油预测样本的回收率为96.9%~101.7%、 预测均方根误差为0.009 mg·mL-1; 在不同实验温度条件构建的四维响应数阵能够更为准确地测定出航空煤油和润滑油的组分浓度, 其回收率更高和预测均方根误差更小, 满足准确定量分析的要求; AWRCQLD算法在航空煤油和润滑油样本的荧光光谱严重重叠的情况下, 较之二阶校正算法和4-PARAFAC算法, AWRCQLD算法更能够体现出三阶校正算法所具有的优势, 综合预测能力更强, 达到了对混合油液进行快速检测的目的。 该研究提供了一种不依赖于“物理和化学分离”的快速、 准确的对混合油液进行检测的“数学分离”方法, 为石油类混合油液检测提供了必要的技术支持。
三维荧光光谱 三阶校正 交替加权残差约束四线性分解 混合油液检测 Three-dimensional fluorescence spectroscopy Third-order calibration Alternating weighted residue constraint quadriline Mixed oil detection 
光谱学与光谱分析
2019, 39(10): 3129

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!