作者单位
摘要
1 南华大学 电气工程学院,湖南 衡阳 421001
2 中国科学院 合肥物质科学研究院 等离子体物理研究所,合肥 230031
随着磁约束聚变实验装置对中性束注入器的输出束流强度与脉冲时间的要求越来越高,开展高功率大面积射频离子源的研究迫在眉睫。为了实现大面积、高密度均匀等离子体放电,基于多驱动射频离子源的设计是当前的发展趋势,而阻抗匹配网络是射频功率源将最大功率输送至线圈并耦合至等离子体的关键,故对其结构设计和调谐特性的研究是不可或缺的。基于前期在单驱动射频离子源的研究基础上,结合双驱动射频离子源的放电需求,开展了双驱动阻抗匹配网络优化结构的设计与分析,通过实验中对匹配网络的调谐,成功实现了140 kW高功率和25 kW/1000 s长脉冲的稳定运行。随后在等离子体稳定放电的基础上研究了两个驱动器之间的功率分配均匀性问题,实验结果表明了该匹配网络的优化设计合理可行,上下驱动器的射频功率分配基本均匀。
中性束注入系统 双驱动射频离子源 阻抗匹配 射频功率传输系统 等离子体 neutral beam injection system dual drive RF ion source impedance matching RF power transmission system plasma 
强激光与粒子束
2024, 36(1): 016002
作者单位
摘要
华中科技大学 电气与电子工程学院,磁约束聚变与等离子体国际合作联合实验室,武汉 430074
基于负离子的中性束注入是未来大型托卡马克装置不可或缺的辅助加热方式。中性束系统中的加速极电源需要输出−200 kV电压和5 MW的功率,还经常面临负载短路和断路的特殊工况。过去对加速极电源的研究中缺少高压部分的方案设计,而电源中高压部件的绝缘设计是电源研制过程中必不可少的关键环节。据电源指标和特殊工况的特点,计算了电源高压部分的隔离升压变压器、高压整流器和高压滤波器的电路参数,并对这些部件基于油浸式绝缘进行了工程设计,通过有限元仿真分析进行了绝缘验证。仿真结果表明,这些部件中的电场强度最高为16.22 kV/mm,小于变压器油击穿场强并具有2倍的绝缘裕度。设计的高压部件结构可以满足电源的绝缘要求。
中性束注入 加速极电源 高电压 有限元仿真 绝缘验证 neutral beam injection acceleration grid power supply high-voltage finite element simulation insulation verification 
强激光与粒子束
2024, 36(2): 025011
作者单位
摘要
中国科学院 合肥物质科学研究院 等离子体物理研究所,合肥 230031
负离子源中性束注入(NNBI)系统是聚变堆主机关键系统综合研究设施(CRAFT)的组成部分,其目标是开展NNBI相关的科学与工程问题研究,为未来聚变堆NNBI系统的研制与运行积累经验。加速器的束流光学特性决定着最终形成束流的发散性,进而影响着束流在加速器和束线中的传输效率,这对NNBI系统的高功率、高能量、长脉冲运行至关重要。为此,采用IBSimu离子束流模拟程序对目前CRAFT NNBI的400 keV加速器电极系统的物理设计进行束流光学特性分析与评估。目前该套电极结构的设计与ITER负离子源类似,束发散的计算结果满足设计要求。在负离子束流密度较高时(100~300 A/m2范围内),具有更小束发散角;引出距离(5~7 mm范围内)和加速距离(88~110 mm范围内)的适当增加,也呈现出束发散角下降趋势。
中性束注入 负离子源 静电加速器 束流光学 束流发散 neutral beam injection negative ion source electrostatic accelerator beam optics beamlet divergence 
强激光与粒子束
2023, 35(11): 114001
舒先来 1,2刘智民 1,2谢亚红 1,2,*王娜 1,2[ ... ]胡纯栋 1,2
作者单位
摘要
1 中国科学院 合肥物质科学研究院,合肥 230031
2 中国科学技术大学,合肥 230026
基于射频负离子源的中性束注入系统是高功率长脉冲(稳态)运行中性束注入系统的最佳选择。负离子源是中性束注入系统的核心部件,需要实现稳定的负离子束引出和加速。在负离子源的运行过程中引出负离子电流会发生变化,尤其在长脉冲、高能量运行条件下会更加明显,因此无法满足稳定运行的要求。为了实现引出束流的稳定引出,开展了束流反馈控制研究,研发了一套基于射频功率调节的束流反馈控制系统,并将束流反馈控制系统应用在射频负离子源测试平台,开展了束流反馈控制测试。测试结果表明束流反馈控制系统能够实现对束流的实时反馈调节以获得束流的稳定引出,验证了基于射频功率调节的束流反馈控制的可行性,为高功率射频负离子源的研制提供支持。
中性束注入 射频负离子源 长脉冲 稳定输出 反馈控制 neutral beam injection RF negative ion source long pulse stable output feedback control 
强激光与粒子束
2022, 34(11): 116002
作者单位
摘要
1 南华大学 电气工程学院,湖南 衡阳 421001
2 核工业西南物理研究院,成都 610041
中性束注入弧电源的性能严重影响弧放电的稳定性和中性束加热的效率。HL-2A装置弧电源采用基于晶闸管相控调压和12脉波不控整流的线性电源技术;HL-2M测试束线弧电源采用基于超级电容和IGBT全控整流的开关电源技术。为了优化电源系统性能、改进弧放电稳定性,研究了采样频率对弧放电稳定性的影响。通过对两套电源控制系统进行建模,利用MATLAB仿真了不同采样频率下HL-2M弧流电源控制系统的阶跃响应性能和HL-2A的控制系统性能,分析了采样频率对系统性能的影响。利用离子源测试平台进行不同采样频率下的弧放电实验对仿真结果进行验证,实验结果与仿真结果一致。实验结果验证:采样频率对弧放电稳定性有很大影响,在频率可调范围内,增大采样频率,可以提高控制系统性能,优化弧放电稳定性;HL-2A弧放电不稳定的原因是晶闸管导通特性和滤波电路引起的。
中性束注入 HL-2A HL-2M 弧电源 控制系统 采样频率 neutral beam injection HL-2A HL-2M arc power supply control system sampling frequency 
强激光与粒子束
2021, 33(8): 085002
王艳 1,2刘智民 1,2焉镜洋 1,2梁立振 1[ ... ]胡纯栋 1,2
作者单位
摘要
1 中国科学院等离子体物理研究所, 安徽 合肥 230031
2 中国科学技术大学, 安徽 合肥 230026
中性束注入是等离子体加热和电流驱动的最有效方法之一。 中性束注入的三个基本过程为: 离子束的产生, 离子束的中性化和中性束的传输, 其中, 离子束的中性化是关键环节之一。 对于EAST-NBI气体中性化室而言, 中性化室内气体靶厚度会直接影响离子束的中性化效率, 而且还会进一步影响到中性束的传输效率。 基于多普勒频移效应, 提出了一种新的诊断气体靶厚度的方法, 并且已经被应用于EASTNBI测试平台上。 该方法主要是基于中性束的束成分随气体靶厚度的演化过程, 利用中性束发射Dα光谱线强度完成计算。 因此, 它被应用于中国科学院等离子体物理研究所EASTNBI装置上。 在中性化室出口处的观测窗口上进行测量, 在束能量为40~65 keV时, 气体靶厚度值为(0.16~0.22)×1016 cm-2, 随着引出束流的变化, 气体靶厚度随之改变。 根据质量守恒定律, 对中性化室内的气体靶厚度进行一个粗略的估算, 估算的结果与测量的结果基本保持一致, 从而证明了该诊断方法的合理性。 综上, 实验结果表明, 该种基于多普勒频移效应的光谱诊断法可以被用于测量中性化室内的气体靶厚度。
多普勒频移效应 中性束注入 气体靶厚度 Doppler shift effect Neutral beam injection Gas target thickness 
光谱学与光谱分析
2018, 38(6): 1987
龙飞飞 1,2,*明廷凤 1周凡 1,2李凯 1,2[ ... ]高翔 1,2
作者单位
摘要
1 中国科学院 等离子体物理研究所, 合肥 230026
2 中国科学技术大学, 合肥 230026
东方超环(EAST)上高速真空紫外(VUV)成像系统是一套选择性测量中心波长为13.5 nm的等离子体线辐射的光学成像系统。此系统具有高时空分辨能力,主要用于边界(包括台基区)等离子体行为研究。该系统已经投入EAST等离子体物理实验并获得了大量的实验数据。基于这些数据,分析了VUV诊断系统的信号强度与等离子体宏观参数之间的相关性,着重研究了EAST上中性束注入(NBI)加热功率、杂质(碳和锂)水平、电子密度等因素对VUV信号强度的影响。结果与预期基本一致:随着NBI功率的增加,VUV信号强度随之增强;VUV 信号强度与电子密度、杂质水平呈现线性关系。此外,本文还评估了由于NBI注入引起的电荷交换复合产生的C5+离子对VUV信号的贡献,结果表明这部分贡献可以忽略不计。
VUV成像 中性束 等离子体 杂质水平 VUV imaging system neutral beam injection(NBI) plasma impurity concentration 
强激光与粒子束
2018, 30(4): 046001
作者单位
摘要
1 中国科学院 等离子体物理研究所, 合肥 230031
2 中国科学技术大学 核科学技术学院, 合肥 230026
根据EAST-NBI偏转系统工作原理,分析了束流在偏转系统传输的基本过程和特点。利用直接蒙特卡罗方法,发展了中性束注入器束偏转区域束流传输模拟程序。结果显示: EAST-NBI磁偏转系统可很好地剥离束流中的剩余离子; 束偏转区域束流再电离损失约为2.43%; 束流180°偏转所带来线聚焦过程使偏转磁体磁极护板局部面临较高的热流密度。
中性束注入 磁偏转系统 蒙特卡罗方法 neutral beam injection magnetic deflection system Monte Carlo method 
强激光与粒子束
2015, 27(4): 046002
作者单位
摘要
中国科学院 等离子体物理研究所, 合肥 230031
中性束注入(NBI)是磁约束核聚变装置等离子体加热和电流驱动的重要手段。依据东方超环(EAST)NBI实验运行特点,设计了基于网络通讯的集散式控制系统。NBI控制系统采用计算机网络技术,按照控制层次分为远程监控层、服务器控制层和现场控制层,三层控制结构易于系统功能扩展与设备升级。一条束线的两个离子源可以独立运行控制,这为EAST第二条束线控制扩展奠定基础。实验表明,NBI控制系统具备了远程监控、连锁保护和数据处理功能,满足了NBI实验运行的自动化和可视化的需求。
中性束注入 控制系统 东方超环 集散控制 neutral beam injection control system Experimental Advanced Superconducting Tokamak distributed control system 
强激光与粒子束
2014, 26(10): 104003
作者单位
摘要
中国科学院 等离子体物理研究所, 合肥 230031
结合全超导托卡马克中性束注入系统(EAST NBI)的工作原理,采用水冷热测靶形式的离子吞食器回收和测量未被中性化粒子。根据EAST NBI系统对离子吞食器物理特性、空间限制、测量需求及冷却性能等方面的要求,对靶板材料选择、结构设计及布置等进行了分析,给出了离子吞食器具体设计方案。该方案单侧吸收靶板呈V形结构,单个靶板冷却方式采用内置并联冷却水管结构。根据该方案加工获得了EAST NBI系统离子吞食器装置。仿真和实验校验结果验证了本装置可以满足NBI系统4 MW高功率、10 s长脉冲的运行要求。
全超导托卡马克 中性束注入 离子吞食器 高热流部件 高功率 长脉冲 experimental advanced superconducting tokamak neutral beam injection ion dump high-heat-flux components high power long pulse 
强激光与粒子束
2013, 25(10): 2687

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!