作者单位
摘要
上海理工大学环境与建筑学院, 上海 200093
通过硝酸辅助高温缩聚三聚氰胺的方法合成了氮缺陷石墨型氮化碳(g-C3N4)光催化材料, 并利用scanning electron microscope (SEM), brunauer emmett teller (BET), X射线衍射(X-ray diffraction, XRD), ultraviolet-visible spectroscopy (UV-Vis), X射线光电子能谱(X-ray photoelectron spectroscopy, XPS)和Fourier transform infrared spectroscopy (FTIR)等手段对其微观结构和光谱学特征进行了分析, SEM给出了氮化碳和改性材料的表面微观形貌, 改性材料表现出了更小的孔径与更加粗糙类似于“矾花”状的表面, 说明硝酸的加入显著改变了材料的表面结构。 BET图谱可以明显看出硝酸辅助合成材料显示出了较大的比表面积和孔径。 XRD图谱显示改性后的材料保持了氮化碳材料的一般结构特征, 并且两个特征峰均发生了峰宽以及角度的变化, 说明了酸辅助可以改变原材料的结构。 从UV-Vis图谱中看出改性材料发生了明显的红移现象, 说明材料对可见光的响应较原始氮化碳材料有一定增强。 FTIR图谱显示改性后材料在保持原有材料基团的基础上碳氮单键以及氨基基团增多等变化。 从XPS图谱中发现改性材料的结合能以及峰面积发生变化, 由此得出N元素含量显著提高, 推测由于三聚氰胺与硝酸产生部分反应后被高温焙烧引入硝酸中的氮元素。 最后测试了材料在可见光和太阳光照射下的催化性能。 结果表明, 该方法不仅简单易行, 硝酸消耗量低, 而且合成的g-C3N4材料具有很好的多孔结构、 更小的粒度和更高的比表面积等微观结构优势, 以及增强的光吸收响应特征, 更重要的是与由其他方法合成材料的碳氮(C/N)比上升不同, 该方法合成的材料C/N比有明显的下降趋势, 氨基基团也有增多的表现, 这可能因硝酸与三聚氰胺在高温烧结过程中的化学反应所导致。 可见光和太阳光照射催化降解罗丹明B(RhB)的试验结果表明, 当硝酸用量为2 mL时g-C3N4材料的催化效果最佳, 降解率均达到99%, 分别是无硝酸条件下的2.8倍和2.5倍, 并且材料的循环性降解测试表明材料的可回收性强。 这种高效易得、 方便工业化推广和可回收性强的g-C3N4材料为今后的实际应用提供了极好的参考。
氮缺陷石墨型氮化碳(g-C3N4) 硝酸 氮缺陷 光催化 Nitrogen-defective g-C3N4 Nitric acid Nitrogen deficiency Photocatalysis 
光谱学与光谱分析
2020, 40(7): 2159

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!