作者单位
摘要
大连理工大学三束材料改性教育部重点实验室, 辽宁 大连 116024
提出了一种阵列式线-线沿面介质阻挡放电结构, 利用双极性高压纳秒脉冲电源, 在大气压空气中激励产生了相对大面积的放电等离子体。 其中, 高压电极、 地电极均为圆柱形金属, 放电反应器由20组相间排列的阵列式线型高压电极和套有介质管的阵列式线型地电极组成。 利用电压探头、 电流探头、 示波器等测量了放电电压和放电总电流, 并计算得出了放电的实际电流。 利用光纤、 光栅光谱仪、 CCD等测量了波长范围在300~440 nm和766~778 nm的发射光谱, 即氮分子第二正带N2 (C3Πu→B3Πg)包括Δν= +1, 0, -1, -2, -3、 氮分子离子第一负带N+2(B2Σ+u→X2Σ+g), N2 (B3Πg→A3Σ+u)和O (3p5P→3s5S2)的发射光谱。 比较了氮分子第二正带N2 (C3Πu→B3Πg)的各个振动峰和各个活性物种的发射光谱强度, 以及这些发射光谱强度随着脉冲峰值电压的变化。 测量了N2(C3Πu→B3Πg, 0-0)的二次、 三次衍射光谱, 与原始光谱在转动带、 背景光谱等方面进行了比较, 并计算了二次衍射和原始光谱之间的峰值比。 利用氮分子第二正带N2 (C3Πu→B3Πg, Δν=+1, 0, -1, -2)和氮分子离子第一负带N+2 (B2Σ+u→X2Σ+g, 0-0)模拟了等离子体的转动温度和振动温度, 对模拟结果进行了比较, 并研究了脉冲峰值电压对等离子体振动温度和转动温度的影响。 通过测量放电的电压和计算得到的放电电流发现, 当脉冲峰值电压为22 kV, 脉冲重复频率为150 Hz时, 阵列式线-线沿面介质阻挡放电的放电电流在正脉冲、 负脉冲两个方向上均可达75 A左右。 通过诊断放电等离子体的发射光谱发现, 在测量的波长范围内, 放电产生的活性物种主要有氮分子第二正带N2 (C3Πu→B3Πg)、 氮分子离子第一负带N+2(B2Σ+u→X2Σ+g), N2 (B3Πg→A3Σ+u)和O (3p5P→3s5S2)。 在脉冲峰值电压22~36 kV的变化范围内, 氮分子第二正带N2(C3Πu→B3Πg, 0-0)的发射光谱强度始终保持最强, N2 (B3Πg→A3Σ+u)次之, 而氮分子离子第一负带N+2(B2Σ+u→X2Σ+g)和O (3p5P→3s5S2)的发射光谱强度较弱。 同时, 当脉冲峰值电压升高时, 氮分子第二正带N2 (C3Πu→B3Πg)的所有振动峰, 以及氮分子离子第一负带N+2(B2Σ+u→X2Σ+g), N2 (B3Πg→A3Σ+u)和O (3p5P→3s5S2)的发射光谱强度均随之升高。 通过比较氮分子第二正带N2(C3Πu→B3Πg, 0-0)的原始、 二次衍射、 三次衍射光谱发现, 二次、 三次衍射光谱的转动带更清晰, 但三次衍射光谱的背景更强, 因此氮分子第二正带N2(C3Πu→B3Πg)的二次衍射光谱更有利于模拟等离子体的转动温度。 通过比较模拟得到的振动温度和转动温度发现, 氮分子第二正带N2 (C3Πu→B3Πg, Δν=-2)在N2 (C3Πu→B3Πg)四个谱带Δν=+1, 0, -1, -2中最适于模拟等离子体振动温度, 而利用氮分子离子第一负带N+2 (B2Σ+u→X2Σ+g,0-0)模拟得到的等离子体转动温度要比N2 (C3Πu→B3Πg, Δν=-2)的模拟结果高约10~15 K。 同时, 当脉冲峰值电压升高时, 由N2 (C3Πu→B3Πg, Δν=-2)和N+2 (B2Σ+u→X2Σ+g, 0-0)模拟得到等离子体的转动温度均出现了略微上升的趋势, 而利用N2 (C3Πu→B3Πg, Δν=-2)模拟得出的振动温度则略微下降。
沿面介质阻挡放电 大气压放电 纳秒脉冲放电 发射光谱 Surface dielectric barrier discharge Atmospheric discharge Nanosecond pulsed discharge Optical emission spectra 
光谱学与光谱分析
2019, 39(4): 1236
作者单位
摘要
1 河北大学 物理科学与技术学院, 河北 保定 071002
2 滨州学院 航空工程学院, 山东 滨州 256603
在双水电极介质阻挡放电装置中,在氩气和空气的混合气体放电过程中通过改变气体压强可以得到一种新型等离子体光子晶体。该光子晶体具有四边形的复杂对称结构,包括晶胞中心处的细等离子体柱、四周的等离子体片、等离子体片交叉点产生的等离子体柱和边缘处的粗等离子柱。运用发射光谱法研究了该等离子体光子晶体不同位置处的等离子体状态,通过测量氩原子696.54 nm(2P2→1S5)发射谱线的展宽对比了电子密度,通过氮分子第二正带系(C3Πu→B3Πg)发射谱线计算了分子振动温度。实验结果证实,不但晶胞中心处的细等离子体柱、四周的等离子体片、等离子体片交叉点产生的等离子体柱和边缘处的粗等离子柱具有不同的等离子体状态,不同位置处的晶胞中心细等离子体柱也具有不同的等离子体状态。电子密度由大到小排列依次为:4个角上的细等离子体柱(A)、靠近4个边的细等离子体柱(B)、靠近中心的细等离子体柱(C)、边缘处的粗等离子体柱(D)、等离子体片交叉点产生的等离子体柱(E)、四周的等离子体片(F)。分子振动温度的变化规律与电子密度相反。由于该晶体结构中A、B、C 3处的折射率均不相同,由内向外呈周期性渐变排列,它们和其他位置处不同的等离子体状态构成了具有渐变折射率的等离子体光子晶体。
等离子体光子晶体 介质阻挡放电 发射光谱 plasma photonic crystal dielectric barrier discharge optical emission spectra 
发光学报
2017, 38(2): 232
作者单位
摘要
1 河北大学物理科学与技术学院, 河北 保定 071002
2 滨州学院光电工程系, 山东 滨州 256603
利用双水电极介质阻挡放电装置, 在气体放电中产生了一种由放电丝自组织形成的复杂结构等离子体光子晶体。该晶体结构由许多四边形的晶胞组成, 每个晶胞包括大点、两种不同的小点和线, 分别对应粗等离子体柱、两种细等离子体柱和等离子体片。采用发射光谱法, 对不同位置处的等离子体状态进行了研究, 对比了其电子密度和分子振动温度。具体方法是通过氩原子696.54 nm(2P2→1S5)的发射谱线测量谱线展宽进而对比电子密度, 通过氮分子第二正带系(C3Πu→B3Πg)的发射谱线计算分子振动温度。结果发现: 四种不同位置的等离子体具有不同的电子密度和分子振动温度, 即它们各自处于不同的等离子体态。电子密度按照降序排列顺序依次为: 中心粗等离子体柱四周的细等离子体柱、粗等离子体柱、边缘处的等离子体片、等离子体片交叉点处的细等离子体柱;分子振动温度的变化趋势与电子密度相反。由于等离子体电子密度不同, 对光的折射率也不同, 因此在该晶体结构中, 粗等离子体柱、两种细等离子体柱以及等离子体片具有不同的折射率, 它们和周围未放电的区域自组织形成具有五种折射率的复杂结构等离子体光子晶体。该等离子体光子晶体易于产生, 具有结构多样、分析简单的优点, 具有广泛的应用前景。
等离子体光子晶体 介质阻挡放电 发射光谱 Plasma photonic crystal Dielectric barrier discharge Optical emission spectra 
光谱学与光谱分析
2015, 35(1): 48
作者单位
摘要
河北大学物理科学与技术学院, 河北 保定 071002
采用发射光谱法, 研究了不同时空结构四边形斑图的等离子体参量。 实验发现, 在低气压区和高气压区, 四边形斑图表现出不同的时空结构。 利用N2分子第二正带系的六条谱线强度计算了分子振动温度; 利用第一负带系N+2(391.4 nm)与第二正带系N2(394.1 nm)谱线强度比, 研究了电子能量的变化; 利用Ar原子696.54 nm谱线的展宽和频移来反映电子密度; 利用Ar原子特征谱线强度比法计算了电子激发温度。 结果表明: 低气压区四边形斑图的分子振动温度、 电子激发温度和电子平均能量均大于高气压区四边形斑图, 而电子密度小于高气压区四边形的电子密度。
介质阻挡放电 四边形斑图 发射光谱 Dielectric barrier discharge Square pattern Optical emission spectra 
光谱学与光谱分析
2014, 34(7): 1801
作者单位
摘要
1 大连大学物理科学与技术学院, 辽宁 大连116622
2 大连大学环境与化学工程学院, 辽宁 大连116622
在直流等离子体甲烷转化反应体系中分别引入C6MIMBF4, C6MIMCF3COO, C6MIMHSO4三种离子液体, 采用光谱在线技术检测反应中活性物种的种类和光谱谱峰相对强度的变化, 研究了离子液体在气液等离子体甲烷转化反应中的作用机理。 结果表明: 向甲烷等离子体体系中引入离子液体可得到稳定的气液界面, 并提高了甲烷转化率和C2烃产物收率, C6MIMCF3COO和C6MIMBF4有助于提高C2烃选择性, 而C6MIMHSO4则导致C2烃选择性下降。 在气液等离子体甲烷放电体系中检测到了C, C2, C3, CH, H等活性物种的发射光谱, 与未引入离子液体时相比大多数活性物种的谱线强度均有增加。 核磁共振研究表明反应后离子液体C6MIMBF4结构稳定, 可认为离子液体作为液体导电介质提高了等离子体放电强度, 促进等离子体区气相反应过程, 同时离子液体在气液表面反应过程起催化作用。
发射光谱 离子液体 等离子体 甲烷 机理 Optical emission spectra Ionic liquid Plasma Methane Mechanism 
光谱学与光谱分析
2012, 32(11): 2906

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!