阮仁杰 1,2,3曹银花 1,2,3王晓帆 1,2,3马艳红 1,2,3[ ... ]兰天 1,2,3,*
作者单位
摘要
1 北京工业大学 北京市激光应用技术工程技术研究中心, 北京 100124
2 北京工业大学 跨尺度激光成型制造技术教育部重点实验室, 北京 100124
3 北京工业大学 材料与制造学部 先进半导体光电技术研究所, 北京 100124
为解决现有点阵结构光投影装置中准直透镜会导致较强的零级衍射而造成投影点阵光强分布不均匀的问题,提出了一种基于底发射垂直腔面发射激光器的片上点阵光投影装置结构,并给出了衍射光学元件设计思路。首先对目标光场进行光强调整和坐标变换,在无准直透镜情况下利用基于瑞利-索末菲衍射积分的Gerchberg-Saxton改进算法获得片上衍射光学元件的相位分布,并最终对该点阵投影装置的投影效果进行评估。结果表明:在衍射光学元件设计过程中采用高斯光束作为光源时,该结构能更好地抑制零级衍射,获得光强分布更加均匀的投影点阵。此外,该结构不仅可省去透镜的安装,减小投影装置尺寸,还可通过流片工艺实现光源和衍射光学元件一体化集成。
衍射光学 片上结构光 瑞利-索末菲衍射积分 衍射光学元件 Gerchberg-Saxton算法 底发射VCSEL diffractive optics on-chip structured light Rayleigh-Sommerfeld diffraction integral diffractive optical element Gerchberg-Saxton algorithm bottom-emitting VCSEL 
红外与激光工程
2022, 51(6): 20210640
Author Affiliations
Abstract
1 中国科学院上海光学精密机械研究所高功率激光物理联合实验室, 上海 201800
2 中国科学院大学, 北京 100049
Aiming at morphology of laser induced damage mitigation pit on the rear surface of 3ω silica optical component, the mitigated area and its downstream intensity distributions with different morphologies are simulated by finite-difference time-domain method (FDTD) and Rayleigh-Sommerfeld (R-S) diffraction integral method, respectively. The results show that when the angle between the tangent line of endpoints on the section contour of the pit and incident light is over 70°, the maximum intensity inside the mitigated optics is less than 1.66, and mitigation effect is better than that of other angles. The maximum downstream intensities of a pit in shape of parabolic surface, cone and truncated cone are all less than 1.46 with an angle of 70° and a width of 200 μm. But when the width of pit increases to 1 mm, for instance, the maximum downstream intensity is as high as 9.31 and area with high intensity covers a long range. Thus, taking the difficulty of laser machining technology into account, a conical pit with an angle larger than 70° is the first choice for the damage mitigation on the rear surface of silica optical component.
激光技术 激光损伤修复 时域有限差分法 瑞利索末菲衍射积分 laser technique laser induced damage mitigation finite-difference time-domain method Rayleigh-Sommerfeld diffraction integral 
Collection Of theses on high power laser and plasma physics
2016, 14(1): 0602009
作者单位
摘要
1 中国科学院上海光学精密机械研究所高功率激光物理联合实验室, 上海 201800
2 中国科学院大学, 北京 100049
针对三倍频光学元件后表面的损伤修复形貌,分别采用时域有限差分法(FDTD)和瑞利索末菲(R-S)衍射积分法,来模拟不同形貌下元件修复区域内以及其后续的光场分布。结果表明,当修复坑截面轮廓线端点切线与光束传播方向夹角大于70°时,元件内部光强极大值小于1.66,修复效果优于其他角度。夹角为70°、宽200 μm的抛物面型、圆锥型和圆台型凹坑的后续光强极大值小于1.46。但是当修复坑宽度较大如达到1 mm时,圆台型凹坑的后续光强极大值高达9.31,且作用区间长。因此,考虑实际激光修复工艺的难度,夹角大于70°的圆锥型凹坑是石英元件后表面损伤修复的首选形貌。
激光技术 激光损伤修复 时域有限差分法 瑞利索末菲衍射积分 
中国激光
2016, 43(6): 0602009
Author Affiliations
Abstract
Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Science, Shanghai 201800, China
The physical meaning and essence of Fresnel numbers are discussed, and two definitions of these numbers for offaxis optical systems are proposed. The universal Fresnel number is found to be N=(a2/λz)*C1+C2. The Rayleigh–Sommerfeld nonparaxial diffraction formula states that a simple analytical formula for the nonparaxial intensity distribution after a circular aperture can be obtained. Theoretical derivations and numerical calculations reveal that the first correction factor C1 is equal to cosθ and the second factor C2 is a function of the incident wavefront and the shape of the diffractive aperture. Finally, some diffraction phenomena in off-axis optical systems are explained by the off-axis Fresnel number.
correction factor off-axis Fresnel number off-axis optical system Rayleigh–Sommerfeld diffraction integral 
Collection Of theses on high power laser and plasma physics
2014, 12(1): e17
Author Affiliations
Abstract
Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Science, Shanghai 201800, China
The physical meaning and essence of Fresnel numbers are discussed, and two definitions of these numbers for offaxis optical systems are proposed. The universal Fresnel number is found to be N=(a2/λz)*C1+C2. The Rayleigh–Sommerfeld nonparaxial diffraction formula states that a simple analytical formula for the nonparaxial intensity distribution after a circular aperture can be obtained. Theoretical derivations and numerical calculations reveal that the first correction factor C1 is equal to cosθ and the second factor C2 is a function of the incident wavefront and the shape of the diffractive aperture. Finally, some diffraction phenomena in off-axis optical systems are explained by the off-axis Fresnel number.
correction factor off-axis Fresnel number off-axis optical system Rayleigh–Sommerfeld diffraction integral 
High Power Laser Science and Engineering
2014, 2(3): e17
作者单位
摘要
1 中国科学院上海光学精密机械研究所, 上海 201800
2 zlj@siom.ac.cn
基于矢量瑞利索末菲衍射积分,建立了非傍轴条件下四瓣高斯光束经过偏心圆孔光阑在自由空间传输的矢量场模型。选取倾斜光轴作为参考光轴,借助于硬边圆孔的复高斯级数分解,得到了近场模型下衍射场分布的矢量解析式。通过数值计算和模拟,详细讨论了f参数、光束阶次、衍射孔位置和截断参数对像场分布的影响,包括衍射场主瓣强度的位置和光束宽度。这些结论有助于更好地理解四瓣高斯光束在离轴非对称光学系统中的传输特性。
物理光学 四瓣高斯光束 矢量瑞利索末菲衍射积分 硬边圆孔光阑 
中国激光
2011, 38(9): 0902005
作者单位
摘要
四川大学激光物理与化学研究所,成都 610064
基于瑞利索末菲衍射积分公式,在未作近轴近似的条件下,推导出等束宽超短脉冲高斯光束通过线性色散介质的远场公式,并用于研究其远场特性,所得公式可用于大衍射角情况.结果表明,等束宽脉冲高斯光束的频谱上存在一临界角,小于临界角时,出现蓝移;大于临界角时,出现红移,红移量随着衍射角的增大而增大.而脉冲波形将经历时间移动,移动量随衍射角的增大而增大;远场高斯脉冲波形将不再保持不变.此外,群速度色散将引起啁啾,啁啾量随衍射角的增大而减小.
超短脉冲技术 脉冲高斯光束 远场特性 线性色散介质 瑞利-索末菲衍射积分 Ultrashort pulse technology Pulsed gaussian beam Far-field property Linear dispersive medium Rayleigh-Sommerfeld diffraction integral 
光子学报
2006, 35(9): 1404
作者单位
摘要
温州师范学院,物理系,温州,325027
运用Rayleigh-Sommerfeld衍射积分,详细推导了二元环形孔径全空间在轴光强分布公式.由于未作明显的近似,所得公式对衍射距离大于数倍入射波长的衍射空间都是有效的.计算并分析了这种孔径轴线上的光强分布情况.结果显示,它的最大调制深度是入射光强的16倍,比圆形孔径或环形孔径大4倍,近场的光学层析能力比远场的强.在很近场区,二元环形孔径的在轴光强分布对孔径结构比较敏感,这些特性使这种孔径在光子学和光纤光学的应用方面具有潜在的价值.
二元环形孔径 Rayleigh-Sommerfeld衍射积分 在轴光强 近场 binary annular aperture Rayleigh-Sommerfeld diffraction integral on-axis irradiance near field 
应用光学
2004, 25(2): 15

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!