郭俊 1刘坚 1陈鹏 1宋青松 2[ ... ]徐军 2
作者单位
摘要
1 江苏师范大学物理与电子工程学院,徐州 221116
2 同济大学物理科学与工程学院,上海 200092
采用微下拉法生长了不同掺杂浓度(0.25%,0.50%,0.75%,1.00%,原子数分数)的Nd∶CaYAlO4单晶光纤。通过X射线衍射测试了单晶光纤晶体结构,结果表明晶体结构为四方晶系。测试了Nd∶CaYAlO4单晶光纤的室温偏振吸收和荧光光谱,测试样品在807 nm附近有很强的吸收。其中,1.00%Nd∶CaYAlO4的吸收最强,在σ偏振方向的吸收系数为4.20 cm-1,π偏振方向的吸收系数为4.06 cm-1。1.00%Nd∶CaYAlO4单晶光纤最强发射峰在σ和π偏振下都位于1 080 nm,σ偏振方向的发射带宽为17.7 nm,π偏振方向的发射带宽为17.8 nm。0.25%、0.50%、0.75%、1.00%掺杂浓度的Nd∶CaYAlO4单晶光纤4F3/2能级的荧光寿命分别为129、133、135和140 μs,未观察到浓度猝灭。结果表明Nd∶CaYAlO4单晶光纤是有潜力的超快激光增益介质。
微下拉法 单晶光纤 晶体生长 光谱性能 micro-pulling-down method crystal fiber Nd∶CaYAlO4 Nd∶CaYAlO4 crystal growth spectral property 
人工晶体学报
2023, 52(7): 1345
作者单位
摘要
1 中国科学院福建物质结构研究所,福州 350002
2 福州大学化学学院,福州 350106
3 西安电子科技大学光电工程学院,西安 710071
4 甘肃省全固态激光工程研究中心,天水 741001
Yb∶CaGdAlO4(简写为Yb∶CALGO)晶体具有部分无序的结构、优秀的热学和光谱性质、吸收发射带宽,适合采用商用高功率InGaAs二极管泵浦以实现高功率超快激光运转,其较高的非线性折射率系数有利于对锁模激光器的优化。该晶体还具有能级结构简单、本征量子缺陷低、辐射量子效率高等优点,是近年来新一代紧凑型、高效率、低成本激光二极管(LD)泵浦飞秒激光增益介质。本文简要介绍Yb∶CALGO的晶体结构、晶体生长、缺陷分析、热学性质和光谱性质等,并综合国内外学者近期的一些研究成果,重点综述了Yb∶CALGO晶体在半导体可饱和吸收镜、克尔透镜锁模的超快激光器及再生放大器超快激光技术中的最新研究进展。
Yb∶CaGdAlO4晶体 晶体生长 热学性质 光谱性质 超快激光 Yb∶CaGdAlO4 crystal crystal growth thermal property spectral property ultra fast laser 
人工晶体学报
2023, 52(7): 1195
蒋晓琦 1,2,*孙焰 1王亚飞 1王欣 1[ ... ]郭爱民 3
作者单位
摘要
1 中国科学院上海光学精密机械研究所,高功率激光单元技术实验室,上海 201800
2 上海大学,材料科学与工程学院,上海 201900
3 中信金属股份有限公司,北京 100004
蓝光激光器在彩色激光显示、高密度光储存、海洋资源探测、水下通信以及生物科技等领域具有广泛的应用前景。目前较为成熟的Yb3+掺杂光纤激光器倍频后仅能获得~490 nm蓝绿光,因此如何得到接近450 nm的纯蓝光激光器是目前急需解决的问题。Nd3+:4F3/2→4I9/2能级跃迁产生的0.9 μm光经倍频后可获得~450 nm光,并可应用于蓝光激光器,但该跃迁产生的光所占荧光分支比较低。本文系统研究了1%(质量分数)Nd2O3掺杂50GeO2(20-x)PbO15BaO15ZnOxNb2O5(x%=0%,2.5%,5%,10%,15%,摩尔分数)玻璃的吸收光谱、荧光光谱和荧光寿命,计算了相应的JuddOfelt强度参数以及增益带宽。研究发现,Nb2O5的加入会使Nd3+在900 nm荧光峰的吸收截面、发射截面、有效线宽和荧光分支比增加。当Nb2O5浓度为10%(摩尔分数)时,JuddOfelt强度参数Ω2=5.91×10-20 cm2,光谱质量参数χ=1.01,荧光分支比为42.9%。综上所述,Nb2O5能提高Nd3+ 0.9 μm的荧光分支比,从而倍频获得纯蓝光(450 nm),有利于蓝光激光器的发展及应用。
Nb2O5浓度 锗酸盐玻璃 光谱特性 JuddOfelt强度参数 ~0.9 μm荧光 Nd3+ Nd3+ Nb2O5 concentration germanate glass spectral property JuddOfelt intensity parameter ~0.9 μm fluorescence 
硅酸盐通报
2022, 41(11): 3768
作者单位
摘要
同济大学物理科学与工程学院,高等研究院,上海 200092
采用自主设计改造的温梯炉,成功生长了不同浓度Ho3+、Y3+掺杂的CaF2及SrxCa1-xF2晶体,晶体尺寸约为15 mm×55 mm,生长周期约为6 d,能够实现7种不同浓度晶体的同步生长,并选取其中的4%(原子数分数)Ho,4%Y∶CaF2晶体进行分析,吸收测试表明,该晶体448 nm和643 nm处吸收峰的吸收截面分别是1.13×10-20 cm2和0.84×10-20 cm2, J-O理论分析得到了晶场强度参数Ωt(t=2、4、6)、辐射跃迁几率、荧光分支比和辐射寿命。在448 nm氙灯激发下,经计算得到该晶体在546 nm、650 nm 和752 nm处的发射截面分别为10.450×10-21 cm2、8.737×10-21 cm2和5.965×10-21 cm2,测得5F4和5F5能级的寿命分别为33.5 μs和17.7 μs。在640 nm LD泵浦激发下,经计算得到该晶体2 031 nm处发射截面为5.375×10-21 cm2,2 847 nm处发射截面为10.356×10-21 cm2,测得5I7和5I6 能级的寿命分别为4.37 ms 和1.85 ms。以上结果表明,多孔坩埚温梯法能够大大提高激光晶体稀土离子掺杂浓度筛选的效率,加快新型激光晶体材料的研发速度。
氟化钙晶体 温度梯度法 晶体生长 多孔坩埚 激光晶体 光谱性能 calcium fluoride crystal temperature gradient technology crystal growth porous crucible laser crystal spectral property 
人工晶体学报
2022, 51(2): 200
作者单位
摘要
1 江苏师范大学物理与电子工程学院,徐州 221116
2 同济大学物理科学与工程学院,上海 200092
3 中国电子科技集团第二十六研究所,重庆 400060
采用微下拉法成功生长出Sm∶YAG和Sm∶Y3ScAl4O12单晶光纤。XRD结果表明晶体为立方晶系,晶胞参数分别为a=1.199 3 nm和a=1.200 0 nm。测试了室温下单晶光纤的拉曼光谱、吸收光谱、荧光光谱和荧光寿命。Sm∶Y3ScAl4O12最大声子能量为766 cm-1。Sm∶YAG和Sm∶Y3ScAl4O12 在可见波段的最强吸收位于405 nm附近,非常适合InGaN/GaN二极管泵浦。404 nm激发下,最强发射带位于618 nm处, 对应于Sm3+的4G5/2→ 6H7/2能级跃迁, 测得Sm∶YAG和Sm∶Y3ScAl4O12上能级4G5/2的荧光寿命分别为1.86 ms和1.83 ms。实验结果表明Sm∶YAG和Sm∶Y3ScAl4O12单晶光纤是有潜力的红橙光波段激光增益介质。
单晶光纤 微下拉法 晶体生长 可见激光 光谱性能 Sm∶YAG Sm∶YAG Sm∶Y3ScAl4O12 Sm∶Y3ScAl4O12 single crystal fiber micro-pulling-down method crystal growth visible laser spectral property 
人工晶体学报
2021, 50(7): 1391
作者单位
摘要
1 中国工程物理研究院化工材料研究所, 绵阳 621900
2 成都理工大学信息科学与技术学院(网络安全学院、牛津布鲁克斯学院), 成都 610059
2~5 μm中红外激光在民用和**领域的应用十分广泛。直接泵浦中红外激光增益介质材料是产生中红外激光的主要方式之一, 二价过渡金属离子Cr2+或Fe2+掺杂的ZnS或ZnSe (TM2+∶Ⅱ-Ⅵ)材料以其独特的光谱特性成为目前最具发展前景的中红外激光增益材料之一。本文首先归纳了TM2+∶Ⅱ-Ⅵ材料的主要制备技术路线, 然后重点介绍了采用激光陶瓷技术制备TM2+∶Ⅱ-Ⅵ材料的研究进展, 最后对TM2+∶Ⅱ-Ⅵ陶瓷的原料制备与烧结技术的优化进行了展望。希望以此促进TM2+∶Ⅱ-Ⅵ激光陶瓷材料的发展, 为获得高性能的TM2+∶Ⅱ-Ⅵ中红外激光器奠定关键材料基础。
激光陶瓷 中红外激光 TM2+∶Ⅱ-Ⅵ材料 光谱特性 烧结技术 laser ceramics mid-infrared laser TM2+∶Ⅱ-Ⅵ material spectral property sintering technology 
人工晶体学报
2021, 50(5): 947
李江 1,2,*田丰 1,2刘子玉 1,2
作者单位
摘要
1 中国科学院上海硅酸盐研究所,透明光功能无机材料重点实验室, 上海 201899
2 中国科学院大学,材料与光电中心, 北京 100049
波段为2~5 μm的中红外激光在**、医疗、通信等方面有着特殊的重要应用, 而直接产生中红外激光的增益介质主要包括气体激光介质、半导体、稀土离子或者过渡金属离子掺杂的化合物。本文首先介绍应用于中红外波段的发光离子(包括Tm3+, Ho3+, Er3+等稀土离子和Cr2+, Fe2+等过渡金属离子)光谱特性, 然后重点介绍氧化物(包括石榴石和倍半氧化物)和II-VI族化合物(主要是ZnS/ZnSe)两大类中红外激光陶瓷材料的制备与激光性能。最后, 对这两大类中红外激光陶瓷中存在的问题进行了分析, 并对其发展方向进行了展望。
激光陶瓷 发光离子 中红外激光 光谱特性 研究进展 laser ceramics luminescent ion mid-infrared laser spectral property research progress 
人工晶体学报
2020, 49(8): 1467
作者单位
摘要
1 福建船政交通职业学院安全技术与环境工程系,福州 350007
2 福州大学化学学院,光功能晶态材料研究所,福州 350108
采用溶胶凝胶法合成了荧光粉CaMoO4∶Ho3+。借助X射线粉末衍射仪、荧光光谱仪进行表征并利用Rietveld方法对其结构进行精修。研究了Ho3+的掺杂量对其光谱性质的影响并计算了CaMoO4∶Ho3+的色坐标。结果表明: Ho3+最佳掺杂量为2%(摩尔分数),浓度猝灭机理为电偶极-电偶极相互作用。该系列荧光粉的色坐标范围为x=(0.298 7~0.317 7),y=(0.664 4~0.689 7),属于绿色发光区域。CaMoO4∶Ho3+荧光粉在450 nm处可被有效激发,是一种有潜在价值的白光LED用绿色荧光粉。
溶胶-凝胶法 绿色荧光粉 光谱性质 XRD-Rietveld结构精修 CaMoO4∶Ho3+ CaMoO4∶Ho3+ sol-gel mehod green phosphor spectral property XRD-Rietveld refinement 
人工晶体学报
2020, 49(9): 1614
檀贯妮 1,2,3,4,*高宏 1,2,3,4,5宋杰 6商士斌 1,2,3,4,5宋湛谦 1,2,3,4,5
作者单位
摘要
1 中国林业科学研究院林产化学工业研究所
2 生物质化学利用国家工程实验室
3 国家林业局林产化学工程 重点开放性实验室
4 江苏省生物质能源与材料重点实验室, 江苏 南京 210042
5 中国林业科学研究院林业新技术研究所, 北京 100091
6 Department of Chemistry and Biochemistry, University of Michigan-Flint, Flint, MI 48502, USA
对三苯胺进行溴代和C-N偶联反应合成4-萘基三苯胺(a), 对脱氢枞酸进行酯化、 溴代、 硝化、 还原和C-N偶联反应合成13-[N,N-(4-萘基苯基)-苯基]胺基-脱异丙基脱氢枞酸甲酯(b)及13-[N,N-双(4-萘基苯基)]胺基-脱异丙基脱氢枞酸甲酯(c)两个化合物, 通过1H MNR, 13C MNR及MS对化合物的结构进行表征。 为了研究化合物结构与光谱性能之间的关系, 首先利用Gaussian 09程序采用密度泛函DFT/B3LYP方法, 对三个化合物的空间构型进行全优化, 得到它们的键长、 键角和二面角, 对比发现脱氢枞酸骨架和萘环的引入会影响化合物的共平面性, 而萘环的引入会增大化合物的共轭程度。 光谱性能方面, 研究了三种化合物在甲醇、 二氧六环、 四氢呋喃、 二氯甲烷和环己烷这5种极性逐渐减小的溶剂中的荧光发射光谱和紫外吸收光谱。 结果表明, 在荧光光谱中, 化合物a, b和c在不同极性溶剂中最大荧光发射波长均有不同程度位移, 在甲醇中最大, 在环己烷中最小, 但是位移并非随着极性的增大而只发生红移, 在二氯甲烷、 四氢呋喃和二氧六环3种极性依次增大的溶剂中, a, b, c的荧光发射波长均随着溶剂极性的增大而发生较大程度的蓝移; 在同一溶剂中, 化合物b和c相对于a的荧光发射波长依次发生红移, c的红移程度与b差距不大。 紫外吸收光谱中, 三个化合物在不同极性溶剂中的最大吸收波长也有差异, 在200~250 nm区间, 三个化合物均在二氯甲烷中有较大位移, 在300~350 nm区间, 在甲醇中位移较大, 而在250~300 nm区间, 最大吸收波长差别不大; 在同一溶剂中, 它们在300~350 nm区间的最大吸收波长差别较大, 化合物c较a红移26 nm。 结合结构优化所得数据可以证明, 化合物的共轭程度对荧光发射光谱和紫外吸收光谱均有影响, 而共平面性对荧光发射光谱影响较大。 化合物a, b和c在不同极性溶剂中荧光发射光谱和紫外吸收光谱的较大变化, 表明它们有明显的溶致变色行为, 具有作为分子探针探测外部环境极性大小的潜能。
脱氢枞酸三芳胺 D-A结构 合成 空间构型 光谱性能 Dehydroabietic acid-based triarylamine D-A structure Synthesis Spatial configuration Spectral property 
光谱学与光谱分析
2019, 39(7): 2083
作者单位
摘要
1 吉林大学第二医院, 吉林 长春 130041
2 中国科学院长春应用化学研究所, 吉林 长春 130022
稀土螯合物的制备是均相时间分辨荧光免疫分析中的关键部分, 为了合成理想的稀土螯合物, 以2,6-二(溴甲基)吡啶-3,5-二甲酸二乙酯为原料, 首先优化合成了Li+2,6-{N,N’,N,N’-[二(2,2’-联吡啶-6,6’-二甲基)]二(氨甲基)}-吡啶-二羧酸乙酯, 使其产率明显提高。 进一步选择乙腈和甲醇两种反应体系合成铕螯合物, 并比较了不同反应体系下合成的铕螯合物的光谱性质。 研究表明, 乙腈和甲醇两种反应体系所得铕螯合物的激发光谱(最大激发波长为310 nm)、 发射光谱(最大发射波长为616 nm)、 量子产率基本相同, 荧光强度在10-8~10-5 mol·L-1范围内与Eu3+浓度均成线性, 相关系数分别为0.993 73和0.986 65, 两种铕螯合物(c=2.5×10-5 mol·L-1)的荧光强度略有差异, 荧光寿命分别为825和830 μs。 因此, 两种反应体系所得铕螯合物具有斯托克斯位移大、 荧光强度强以及荧光寿命长等优点, 并且此种穴状螯合剂结构中的吡啶-2,2-联吡啶可保护铕离子免受其他物质的干扰, 是理想的稀土螯合物, 可用于蛋白质、 核酸等生物分子的标记。 本研究不仅拓展了合成新型稀土螯合物的方法, 而且为进一步建立均相时间分辨荧光免疫分析奠定了基础。
均相时间分辨荧光免疫分析 稀土穴状螯合物 合成 光谱性质 Homogeneous time-resolved fluorescence immunoassay Rare earth cryptate Synthesis Spectral property 
光谱学与光谱分析
2018, 38(7): 2189

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!