作者单位
摘要
1 长春理工大学 电子信息工程学院,吉林 长春 130022
2 长春理工大学 光电工程学院,吉林 长春 130022
3 吉林珩辉光电科技有限公司,吉林 长春 130022
光电跟踪系统在运行中受到摩擦力矩的影响导致在跟踪过程中产生抖动以及爬坡等现象,严重影响跟踪精度。为提升跟踪精度,结合Stribeck摩擦力矩提出一种最小二乘法与粒子群算法(PSO)结合辨识的方法,建立摩擦模型并使用扰动分离自抗扰(DSADRC)算法进行补偿。首先对转台系统进行建模,分析摩擦对系统的扰动;其次根据Stribeck摩擦模型的特点通过恒转速—力矩实验测得数据,使用最小二乘法与粒子群算法对力矩数据进行辨识,建立起Stribeck模型并将模型等效进系统中;最后使用扰动分离自抗扰控制算法对摩擦模型进行补偿。实验结果表明:最小二乘法与粒子群算法相结合辨识得到的摩擦模型与实测数据之间的平均误差为3.4%,扰动分离自抗扰在单边最大速度误差方面相较于PID控制与经典自抗扰控制分别下降了77.72%和58.78%,在摩擦力矩抑制方面与PID控制和经典自抗扰控制相比分别提升了73.59%和60.59%。
光电跟踪系统 Stribeck摩擦模型 最小二乘法 粒子群算法 扰动分离自抗扰 photoelectric tracking system Stribeck friction model least squares method particle swarm optimization disturbance separation active disturbance rejection control 
红外与激光工程
2023, 52(11): 20230151
作者单位
摘要
上海大学 机电工程与自动化学院, 上海200072
为了提高由直线电机驱动的精密定位系统的定位精度, 建立了优化Stribeck摩擦模型, 对摩擦力这一影响定位精度的主要因素进行补偿。首先, 对于传统的Stribeck摩擦模型进行优化, 采用改进的最小二乘算法对模型参数进行辨识。然后, 对所建立的摩擦模型补偿算法进行仿真并与扰动观测器的补偿算法进行比较, 发现前者速度比后者速度在补偿后提高了4.33%, 对摩擦力具有更好的补偿效果。最后, 在大行程二维精密定位平台上进行验证, 根据平台能够达到的最大速度定义0.005 m/s为低速运动, 0.05 m/s为高速运动, 在这两种速度下进行实验, 并与基于库仑摩擦前馈补偿模型比较。实验结果表明: 精密定位平台在速度为0.005 m/s的低速运动时, 优化模型的跟随误差减小了67.67%; 在速度为0.05 m/s的高速运动时, 优化模型的跟随误差减小了51.63%, 验证了优化Stribeck摩擦模型补偿算法的有效性。本文提出的优化Stribeck摩擦模型可用于提高由直线电机驱动的精密定位系统的定位精度。
驱动控制 Stribeck摩擦模型 参数辨识 摩擦力补偿 driving control Stribeck friction model parameter identification friction compensation 
光学 精密工程
2019, 27(1): 121

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!