作者单位
摘要
上海大学 机电工程与自动化学院, 上海200072
为了提高由直线电机驱动的精密定位系统的定位精度, 建立了优化Stribeck摩擦模型, 对摩擦力这一影响定位精度的主要因素进行补偿。首先, 对于传统的Stribeck摩擦模型进行优化, 采用改进的最小二乘算法对模型参数进行辨识。然后, 对所建立的摩擦模型补偿算法进行仿真并与扰动观测器的补偿算法进行比较, 发现前者速度比后者速度在补偿后提高了4.33%, 对摩擦力具有更好的补偿效果。最后, 在大行程二维精密定位平台上进行验证, 根据平台能够达到的最大速度定义0.005 m/s为低速运动, 0.05 m/s为高速运动, 在这两种速度下进行实验, 并与基于库仑摩擦前馈补偿模型比较。实验结果表明: 精密定位平台在速度为0.005 m/s的低速运动时, 优化模型的跟随误差减小了67.67%; 在速度为0.05 m/s的高速运动时, 优化模型的跟随误差减小了51.63%, 验证了优化Stribeck摩擦模型补偿算法的有效性。本文提出的优化Stribeck摩擦模型可用于提高由直线电机驱动的精密定位系统的定位精度。
驱动控制 Stribeck摩擦模型 参数辨识 摩擦力补偿 driving control Stribeck friction model parameter identification friction compensation 
光学 精密工程
2019, 27(1): 121
作者单位
摘要
1 厦门大学物理与机电工程学院, 福建 厦门 361005
2 厦门大学化学化工学院, 福建 厦门 361005
荧光干扰是拉曼光谱检测过程中常见的干扰因素之一, 而移频激发法是一种有效的克服荧光干扰的检测手段。 移频激发法利用两个波长相近的激光分别激发被测物质, 并将获得的拉曼光谱进行差谱。 由于两次激发的荧光背景相同, 而拉曼特征峰会产生平移, 因此可有效地消除荧光背景的干扰, 进而利用一定的算法还原拉曼特征峰。 移频激发法的关键在于两个激发光波长的稳定性, 不稳定的波长差将严重影响对拉曼特征峰的还原效果。 本文研制了一种拉曼光谱测试系统, 该系统的双波长LD模块能够产生两个波长稳定的激发光(分别为784.7和785.8 nm), 满足移频激发法的测试要求。 影响激发光波长稳定性的因素主要是光功率和温度, 本系统中对这两个因素均进行了实时的监控, 以保证激发光波长的稳定。 系统的硬件部分主要包括ARM主控板、 双波长LD模块及其驱动电路、 温度控制板、 数字光开关、 光谱检测光路和光纤探头(两个高功率的蝶形封装激光器); 软件部分可自动获取被测物质的拉曼光谱图, 并对其进行后续的处理。 在稳定性测试实验中, 对系统驱动电源电流和激光器温度的稳定性均进行了测试。 测试结果显示, 电流波动范围小于0.01 mA、 温度变化范围小于0.004 ℃, 能够有效地保证激发光波长的稳定性。 最后, 对某品牌花生油进行了拉曼光谱检测, 并对检测结果进行了处理, 获得了良好的效果。
移频激发法 拉曼光谱 双波长 驱动控制系统 SERDS Raman spectroscopy Dual-wavelength Driving control system 
光谱学与光谱分析
2015, 35(3): 640
贾巍 1,2,*范承玉 1,2王海涛 1,2
作者单位
摘要
1 中国科学院 安徽光学精密机械研究所, 合肥 230031
2 中国科学院 大气成分与光学重点实验室, 合肥 230031
激光在大气中传输时, 由于大气湍流的存在, 会导致光束漂移和能量集中度下降。校正倾斜像差, 可以提高激光在大气中传输的质量, 而快速倾斜镜正是倾斜像差校正的关键部件。设计了一个基于柔性轴结构的二维压电陶瓷型快速倾斜镜, 采用高压运算放大器PA96制作其驱动电源, 并选用TMS320F2812型DSP芯片作为倾斜镜控制系统的核心处理器, 经实验测试表明, 该快速倾斜镜的偏转范围达到1.8 mrad, 谐振频率为432 Hz, 角分辨力约为0.5 μrad。最后将此系统应用于激光大气传输倾斜像差校正实验中, 实验结果表明, 该系统能够有效提高光斑能量集中度并降低光斑漂移, 可以应用于激光大气传输中对倾斜像差的校正。
激光大气传输 快速倾斜镜 驱动电源 DSP芯片 驱动控制系统 laser propagation in atmosphere fast steering mirror driving power digital signal process driving control 
强激光与粒子束
2015, 27(5): 051003
作者单位
摘要
1 中国科学院大学工程管理与信息技术学院, 北京 100049
2 安徽光学精密机械研究所环境光学中心, 安徽 合肥 230031
介绍了一种半导体激光器驱动系统,主要包括温度稳定控制电路、电流稳定控制电路和保护电路,给出了具体的参考电路。 通过同时对激光器的工作电流及其温度进行精密控制,使得激光器能稳定工作。保护电路能在激光器工作过程中对 其进行充分保护,防止激光器因误操作或其它因素发生损坏。实验表明,该驱动控制的激光器在恒温(室温)下 工作80 min输出波长漂移不超过0.6 pm。外界环境温度10°C ~50°C范围内,激光器输出波长漂移不超过16 pm。 适用于对激光器稳定要求高的场合。
光电子学 可调谐半导体激光器 驱动控制 低温漂 optoelectronics tunable diode laser driving control low temperature drift 
量子电子学报
2014, 31(5): 569
作者单位
摘要
College of Engineering and Technology, Shenzhen University, Shenzhen 518060, CHN
Beam deflection Electro-optic phased array Driving control Rapidly prototyping 
半导体光子学与技术
2006, 12(1): 67

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!