冯恩昊 1陈蓉 2,3邸士雄 4周占伟 5[ ... ]林鑫 2,3
作者单位
摘要
1 西安高压电器研究院股份有限公司,陕西 西安 710077
2 凝固技术国家重点实验室,陕西 西安 710072
3 金属高性能增材制造与创新设计工业和信息化部重点实验室,陕西 西安 710072
4 中国航发湖南动力机械研究所,湖南 株洲 412002
5 北京卫星制造厂有限公司,北京 100094
6 巴黎高科国立高等工艺技术学院MSMP实验室,法国巴黎 51000
激光增材制造过程中的快速冷却,导致成形零件一般具有较高的残余应力与亚稳态结构。因此,优化热处理工艺对提高成形零件的使用性能至关重要。研究了选区激光熔化(SLM)TC4钛合金经不同热处理(退火、固溶、固溶时效)后的显微组织演化规律及拉伸性能特征。在实验过程中,首先对致密度优良的SLM TC4钛合金进行了不同制度的热处理,再分别对不同状态的样块进行宏观和微观结构、力学性能及断口组织的表征。实验结果表明,沉积态的SLM TC4钛合金显微组织主要为粗大的β相柱状晶,柱状晶内部为大量的、细小的α′相针状马氏体和α相板条间少量的β相颗粒。退火态α′相针状马氏体分解,重新形核长大为α相和β相。固溶态α相发生粗化后呈短棒状。固溶时效处理样品时,其显微组织为呈弥散分布的较均匀的(α+β)相,其中α相粗化为板条状,β相分布在α相周围。沉积态SLM TC4钛合金的强度最大,延伸率最低。沉积态和热处理态SLM TC4钛合金均没有织构。沉积态SLM TC4钛合金的抗拉强度为1238.75 MPa、屈服强度为1080.00 MPa、断后延伸率为8.85%。综合分析得到,三种热处理态SLM TC4钛合金的抗拉强度、屈服强度均有所下降,而断后延伸率有所提高。SLM TC4钛合金分别经过三种热处理后,其断裂方式从沉积态的韧性-脆性混合断裂转变为韧性断裂。
激光技术 热处理 TC4合金 选区激光熔化 微观组织 力学性能 
中国激光
2024, 51(10): 1002321
作者单位
摘要
1 衢州职业技术学院 机电工程学院, 衢州324000
2 衢州学院 浙江省空气动力装备技术重点实验室, 衢州324000
为了提高TC4合金部件表面的耐磨耐腐蚀性, 采用数字化分析测试、金相显微形貌分析等方法, 研究分析了TC4钛合金表面激光熔覆制备Fe35A涂层的显微组织和综合性能。结果表明, 在激光功率为2.3kW、扫描速率为9mm/s、送粉速率为10g/min的最佳经验工艺参数下, TC4表层制备Fe基合金沉积层的宏观形貌最佳, 金相组织较好, 晶粒细化且均匀分布, 基体与沉积层熔合度高; 沉积层表面洛氏硬度高达40.2HRC, 显微硬度平均高达645.5HV, 沉积层整体力学性能明显高于基体组织。该研究为TC4钛合金表面的高质量修复和再利用提供了实践参考。
激光技术 Fe35A合金 硬度 显微形貌 金相组织 TC4合金 laser technique Fe35A alloy hardness micro-morphology microstructure TC4 alloy 
激光技术
2022, 46(5): 653
作者单位
摘要
大连理工大学三束材料改性教育部重点实验室, 辽宁 大连 116024
为提升激光增材制造TC4合金的综合性能,采用铝为合金化组元对其进行组织与性能调控。结果表明:在激光增材制造的非平衡凝固条件下,不同铝添加量的TC4合金凝固组织皆由呈交错排列的β-Ti和α-Ti网篮组织构成,但有所不同的是,随着铝添加量的增加,组织中α-Ti固溶体的相对含量逐渐增多,其尺寸呈现出先减后增的变化趋势,即在铝添加量(质量分数)为1.5%时达到最小。沉积态合金的硬度、屈服强度和摩擦磨损性能随着铝添加量的增加而逐渐增大,而塑性、耐蚀性和表面粗糙度则分别在铝添加量(质量分数)为1.5%时达到最优。这表明,添加1.5%Al的沉积态合金有着最佳的性能匹配,其力学性能、摩擦学性能、电化学性能和成形性能均较TC4合金有了明显提升。
激光技术 激光增材制造 TC4合金 成分调控 组织 性能 
中国激光
2021, 48(14): 1402004
作者单位
摘要
1 西安交通大学金属材料强度国家重点实验室, 陕西 西安 710049
2 西安交通大学机械制造系统工程国家重点实验室, 陕西 西安 710054
采用光学显微镜、扫描电子显微镜、能谱仪、X射线衍射仪、拉伸试验机研究了热处理工艺对激光熔化沉积(LMD)TC4合金微观组织、力学性能及各向异性的影响。结果表明:由于激光能量密度较大,沉积态合金的微观组织为细小的α+β片层及晶界处的魏氏α集束组织,晶界连续,强度最高,塑性与硬度最低,塑性的各向异性最大;在单重固溶时效体系中,随着固溶温度升高,初生α板条不断粗化,晶界断裂程度加剧,硬度不断增加;固溶时效+退火后初生α相的含量最高,塑性最高,但强度最低,硬度居中;在双重固溶时效体系中,随着第二重固溶温度升高,初生α板条进一步粗化,晶界断裂程度加剧,硬度呈下降趋势。经980 ℃/1 h/空冷+550 ℃/4 h/空冷+980 ℃/1 h/空冷+550 ℃/4 h/空冷处理后,晶界基本全部断裂,硬度较低,强塑性匹配较好,塑性的各向异性最小。
激光技术 激光熔化沉积 TC4合金 热处理 微观组织 力学性能 各向异性 
中国激光
2021, 48(10): 1002116
作者单位
摘要
1 中国民航大学民航技术研究院,天津 300300
2 中国民航大学航空工程学院,天津 300300
3 中国民航大学中欧航空工程师学院,天津 300300
采用通快TruDisk4002型同轴送粉光纤激光器,在TC4合金基材表面上制备了单道Ni基激光熔覆层,其中TC4合金的质量分数为35%、Ni60的质量分数为65%,涂层无裂纹气孔等缺陷。通过ABAQUS软件建立了涂层的有限元模型,温度场模拟结果显示,熔池出现“慧尾”现象,与实际激光热源的运行特点吻合。熔池最高温度为3200 ℃左右,激光热源前端的温度梯度大,热源后端的温度梯度小,熔池轮廓与涂层的形貌特征基本吻合,尺寸误差小于5%。从涂层残余应力场的分布来看,熔覆层两侧边缘区域和结合区附近的应力集中现象较为严重,容易萌生裂纹,熔覆层两侧的裂纹主要与高斯热源的分布特点相关,结合区的裂纹主要是由熔覆材料的热物性能差异导致的。实验结果表明,熔覆层的边缘和结合区均出现了明显的裂纹缺陷,与有限元计算结果一致。
激光技术 TC4合金 激光熔覆 数值模拟 应力集中 裂纹 
激光与光电子学进展
2021, 58(3): 0314003
作者单位
摘要
1 沈阳工业大学材料科学与工程学院, 辽宁 沈阳 110870
2 南京中科煜宸激光技术有限公司, 江苏 南京 210038
采用激光3D打印技术制备了TC4合金试样,研究了固溶时效处理对激光3D打印TC4合金显微组织和力学性能的影响规律。结果表明:随着固溶温度升高,初生α相的粗化现象越发明显;随着固溶时间延长,α相转变为β相的数量增多;随着时效温度升高,残余β相中析出的次生α相的长宽均有所增加;随着时效时间延长,次生α相的体积分数有所增加;在时效处理过程中,初生α相中析出了次生网状β相,初生α相之间的β相中析出了次生α相,这两种次生相的析出会影响试样的性能。在950 ℃/1 h/WQ+550 ℃/4 h/AC固溶时效条件下处理后,钛合金的室温抗拉强度为990 MPa,屈服强度为920 MPa,伸长率为11.5%,断面收缩率为27.5%,达到了锻件的国标要求;沉积态和固溶时效态拉伸试样的断口上均布满了韧窝,均为塑性断裂。
激光技术 激光3D打印 TC4合金 固溶时效 显微组织 力学性能 
中国激光
2019, 46(10): 1002003
作者单位
摘要
1 中国民航大学工程技术训练中心, 天津 300300
2 天津工业大学机械工程学院, 天津 300387
3 天津市现代机电装备技术重点实验室, 天津 300387
利用同步送粉激光熔覆技术在Ti811合金表面制备了单道激光熔覆层。利用X射线衍射仪、扫描电镜、能谱分析仪等分析了熔覆层的组织和相组成, 利用显微硬度计测试了熔覆层的显微硬度, 利用摩擦磨损试验机和白光干涉轮廓仪测试了熔覆层的摩擦磨损性能。结果表明:熔覆层为典型的魏氏组织, 在α-Ti围成的晶界中分布着α′-Ti、α″-Ti和β′-Ti, 纳米Ti3Al颗粒弥散分布在熔覆层中; 与基底相比, 熔覆层的显微硬度较, 最高为480 HV; 涂层中弥散分布着大量纳米Ti3Al颗粒, 有效降低了熔覆层的摩擦因数, 提高了熔覆层的摩擦磨损性能。
激光技术 Ti811合金 激光熔覆 TC4合金 纳米Ti3Al 摩擦磨损性能 
中国激光
2018, 45(1): 0102002
作者单位
摘要
1 天津工业大学激光技术研究所, 天津 300387
2 沈阳航空航天大学航空制造工艺数字化国防重点学科实验室, 辽宁 沈阳 110136
基于激光熔化沉积技术, 采用A3钢作为基材, 铜合金作为过渡层, TC4合金作为涂层, 制备了TC4-Cu双相涂层, 并对涂层界面的组织、化学成分和组成相进行了分析, 同时, 对涂层的硬度和耐蚀性能进行了测试。结果表明, TC4-Cu-Fe界面发生了原子相互扩散, 界面处形成了α-Fe、α-Ti等固溶体, 结合区组织细小, 过渡层成功阻碍了Ti原子向Cu-Fe界面的扩散; TC4-Cu双相涂层的平均显微硬度约为500 HV, 约为基材的3倍; TC4-Cu双相涂层的耐蚀性能略高于商用TC4合金的, 远高于A3钢的。
激光技术 激光熔化沉积 TC4合金 显微组织 硬度 电化学腐蚀 
中国激光
2017, 44(11): 1102007

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!