作者单位
摘要
中国计量大学 光学与电子科技学院,杭州310018
利用实验加仿真模拟的方法探究了纳米颗粒墨水中Cu含量(Cu/In+Ga,CGI)对铜铟镓硫硒(CIGSSe)太阳能电池性能的影响。首先,通过不同CGI墨水制备了CIGSSe太阳能电池器件,并对其吸收层进行了SEM,霍尔效应,以及拉曼光谱表征。表征结果表明:随着铜含量上升,吸收层晶体生长状况逐渐改善,且载流子浓度也逐步增大,但吸收层表面却存在越发明显的Cu2-xSe杂相。实验得出当吸收层的CGI为1.03时,器件的能量转换效率(PCE)最高,达10.09%。随后建立了对应的器件仿真模型,获得了具有不同CGI的CIGSSe器件的能量转换效率、器件能带与复合率分布情况,模拟结果表明:随着铜含量提高,载流子浓度上升,器件的开路电压有所提升,但当载流子浓度超过1018 cm-3时,吸收层表面出现了陡峭的能带弯曲现象,这增大了隧穿界面复合的发生,从而影响了器件的能量转换效率。因此,由实验与仿真模拟表明:制备CIGSSe薄膜太阳能电池时,有必要对Cu含量进行调控,从而达到促进晶体生长,减少界面复合,提升器件能量转换效率的目的。
铜铟镓硫硒 纳米颗粒墨水法 铜含量 仿真模拟 界面复合 CIGS nanoparticles ink method CGI analogue simulation interface recombination 
光电子技术
2023, 43(4): 298
作者单位
摘要
1 湖南大学生物学院, 长沙 410082
2 湖南大学生物学院, 长沙 410082南华生物医药股份有限公司, 长沙 410006
3 2.南华生物医药股份有限公司, 长沙 410006
4 南华生物医药股份有限公司, 长沙 410006
微卫星( microsatellites)在新型冠状病毒( SARS-CoV-2)的基因组表达调控、种群遗传进化以及宿主免疫互作调节方面发挥重要作用。该研究利用 NCBI数据库以及微卫星分析系统筛选并测试 SARS-CoV-2原株及变体中不同微卫星数量与遗传特征的关联, 探索影响 SARS-CoV-2遗传多样性的微卫星特征。通过生物信息学分析, 构建 SARS-CoV-2的全基因组序列库, 并收集关于序列库的遗传特征、微卫星数量以及微卫星相对位置分布特征信息;通过生物统计学分析, 对不同微卫星数量进行相关性测试以及单样本 Wilcoxon符号秩非参数检验。结果表明, SARS-CoV-2的原株与变体(除 Lambda和 Omicron)中不同微卫星数量、占比与相对位置分布特征相似。 2核苷酸重复( 77%~78%)、3次基序重复( 22%~23%)以及全长 6 bp(73%)的微卫星占比较高, 而 ORF3a(0.48/100 bp)、 E(0.44/100 bp)与 N(0.40/100 bp)3个编码区序列的微卫星密度也较高。总平均微卫星数量与碱基含量间存在显著的负相关性( r: – 0.799 6;P: 0.009 7), 但与碱基替换量无显著相关性。本研究丰富了分子生物学领域对 SARS-CoV-2的遗传多样性以及进化机制的研究, 并为新型冠状病毒感染疫情的防治提供了新思路。
新型冠状病毒 微卫星 遗传多样性 碱基含量偏向性 种群遗传进化 
激光生物学报
2023, 32(3): 0208
作者单位
摘要
1 广西大学机械工程学院, 广西 南宁 530004
2 广西大学农学院, 广西 南宁 530004广西大学广西甘蔗生物学重点实验室, 广西 南宁 530004
叶绿素含量是甘蔗在生长监测中非常重要的评估内容, 尤其是在甘蔗受到病害侵染的情况下, 准确估计叶绿素含量有利于病害的早期检测与防治, 在实际生产中具有重要意义。 为了构建花叶病胁迫下甘蔗叶片叶绿素含量估计模型, 于2021年7月到11月通过人工接种病菌, 使甘蔗叶片感染花叶病。 对这些感染了花叶病的叶片重复测量高光谱数据。 并通过化学方法测量叶片的叶绿素含量, 以此建立花叶病胁迫下的甘蔗叶片高光谱数据集。 首先使用Savitzky-Golay卷积平滑(SG)、 多元散射校正(MSC)、 变量标准化(SNV)、 一阶导数(1st D)、 二阶导数(2nd D)5种高光谱数据预处理方法建立偏最小二乘回归(PLSR)检测模型, 从而构建高光谱数据最优预处理模型。 利用最优预处理结果, 分别采用相关系数、 连续投影算法(SPA)和随机森林算法(RF)筛选特征波段。 将筛选出的波段分别和BP神经网络(BPNN)、 支持向量回归(SVR)、 K最邻近法(KNN)等机器学习模型结合建立叶绿素含量预测模型。 结果表明, 基于SG处理后建立的PLSR模型精度最高R2p=0.9952, RMSEp=0.235 3 mg·cm-2。 用RF筛选出的特征波段与BPNN学习模型结合的SG-RF-BPNN模型为花叶病胁迫下甘蔗叶片叶绿素含量的最优预测模型, R2p=0.996 4, RMSEp=0.205 8 mg·cm-2。 提出的基于高光谱信息的花叶病胁迫下的叶绿素含量预测模型具有较高的精度和预测能力, 可为大面积种植的甘蔗精准、 无损伤的病害胁迫检测提供科学依据。
甘蔗 花叶病胁迫 叶绿素含量预测 高光谱分析 特征波段提取 Sugarcane Mosaic disease: Chlorophyll content: Hyperspectral 
光谱学与光谱分析
2023, 43(9): 2885
作者单位
摘要
1 江苏大学食品与生物工程学院, 江苏 镇江 212013 江苏省智能农业与农产品加工国际合作联合实验室, 江苏 镇江 212013
2 江苏大学食品与生物工程学院, 江苏 镇江 212013
3 江苏大学食品与生物工程学院, 江苏 镇江 212013 现代农业装备与技术教育部重点实验室(江苏大学), 江苏 镇江 212013
为实现柑橘可溶性固形物含量(SSC)快速无损检测, 基于可见/近红外技术开发了低功耗手持式柑橘可溶性固形物含量无损检测系统。 以宽谱LED光源结合特征窄带微型光谱仪为核心, 设计了手持式柑橘可溶性固形物含量无损检测终端。 开发了基于物联网技术的水果光谱仪云端数据系统, 该系统主要包括用户库、 设备库、 检测数据库和模型库, 通过通讯模块与手持式无损检测终端相连接, 可以实现光谱采集参数修改、 云端数据上传与下载、 云模型的调用等功能。 利用该检测系统获取的光谱数据, 建立一维卷积神经网络(1D-CNN)模型用于预测柑橘的可溶性固形物含量。 该网络包含输入层、 卷积层、 池化层、 全连接层和输出层等7层结构。 主机采集柑橘的光谱数据并建立1D-CNN柑橘可溶性固形物含量预测模型, 并用该模型与多种传统回归方法进行对比。 1D-CNN模型的预测相关系数和预测均方根误差分别为0.812, 0.488, 优于偏最小二乘法(PLS), 人工神经网络(ANN)和支持向量机(SVM)。 采用基于模型的迁移学习方法, 基于主机的1D-CNN模型对从机进行模型传递, 研究了从机标准样本数量对模型传递的影响。 发现使用少量从机光谱样本即可取得较好的效果, 从机预测集均方根误差为0.531。 研究结果表明, 研发的柑橘SSC云模型的手持式可见近红外无损检测系统具有检测快速、 低成本、 操作简便等优点, 基于该检测系统的1D-CNN网络可以有效提取柑橘光谱的有效特征并进行回归分析。 借助迁移学习算法, 可以实现1D-CNN模型在不同装置间的有效传递, 满足柑橘可溶性固形物含量无损检测的需求。 为手持式水果内部品质无损检测系统的开发与应用提供了借鉴和参考。
无损检测 柑橘 可见/近红外光谱 可溶性固形物含量 一维卷积神经网络 迁移学习 模型传递 Nondestructive detection Mandarin Visible/near infrared spectroscopy Soluble solid content One-dimensional convolutional neural network Transfer learning Model transfer 
光谱学与光谱分析
2023, 43(9): 2792
作者单位
摘要
1 北京建筑大学测绘与城市空间信息学院, 北京 102616 建筑遗产精细重构与健康监测北京市重点实验室, 北京 102616
2 北京建筑大学测绘与城市空间信息学院, 北京 102616
壁画酥碱与盐霜主要由其所含的可溶性盐造成, 具有不可逆性, 严重影响壁画的健康状态, 利用非接触式的高光谱技术对壁画所含可溶性盐进行定量反演具有重要意义。 针对壁画盐分检测成本高、 时效低、 需要实地取样等问题, 提出一种基于高光谱盐分指数的壁画盐含量反演模型。 用黄沙土、 麦秸、 细麻与无水Na2SO4等在室内配制成不同盐含量梯度(盐土比例: 0~1%)的模拟壁画样本, 采用ASD-FieldSpec4HI-RES地物波谱仪进行光谱采集, 将断点校正与平均后的数据建立样本光谱集, 以7∶3的比例将样本集划分用于建模与预测。 对原始反射率(R)进行一阶微分(R+1D)、 去包络线后一阶微分(CR+1D)、 倒数的对数后一阶微分(LR+1D)、 Savitzky-Golay平滑后一阶微分(SG+1D)4种增强处理, 将原始反射率与增强处理后的光谱数据与盐浓度进行相关分析, 提取贡献度高的前三强相关波段。 用最强相关波段分别进行线性拟合与抛物线拟合建立单波段回归模型。 利用前三相关波段构造一种适用于壁画盐分的高光谱指数(MSI), 并与归一化盐分指数(NDSI)、 三种盐分指数(SI1 SI2 SI3)、 亮度指数(BI)进行精度评估, 评价指标为决定系数(R2)、 均方根误差(RMSE)、 散点拟合线的斜率与截距。 结果表明: (1)随着盐浓度增加, 反射光谱曲线整体先降低后升高, 盐浓度在0.3%~0.6%范围内壁画样本的反射率最低。 (2)壁画中Na2SO4敏感波段对应为1 420、 1 940与2 210 nm, 在可见光范围也存在光谱响应。 (3)一阶导变换后光谱与盐浓度相关性最强, R2最高提升0.646。 (4)R-1D-MSI反演模型精度最高, R2C与RMSEC分别为0.857与0.116。 该研究可为壁画盐含量的快速、 无损检测提供新的技术手段。
壁画酥碱 高光谱 拟合回归 光谱指数 盐分含量 反演 Mural disruption Hyperspectral Fitted regression Spectral index Salt content Inversion 
光谱学与光谱分析
2023, 43(10): 3272
作者单位
摘要
1 东北林业大学机电工程学院, 黑龙江 哈尔滨 150040
2 东北林业大学机电工程学院, 黑龙江 哈尔滨 150040信阳农林学院, 河南 信阳 464000
3 亚联机械股份有限公司, 吉林 敦化 133700
厚度为0.8 mm的超薄纤维板是目前纤维板品类中的试验创新产品, 树皮含量对其生产设备参数的设定以及静曲强度、 耐水性等质量指标影响较大, 精确测定超薄纤维板木纤维中树皮含量极为重要。 目前树皮含量的精确测定较为困难, 本试验通过高光谱近红外成像系统结合相关算法建立了纤维树皮含量检测模型, 创新了纤维树皮含量的检测方法。 利用高光谱成像仪分别测定了含有杨木树皮为0%、 3%、 5%、 7%、 10%、 12%、 15%、 20%、 25%、 30%和100%的杨木纤维样本的光谱图像。 分析了采用均值中心化(MC)、 多元散射校正(MSC)、 标准正态变量变换(SNV)以及一阶(1-Der)导数四种预处理的对比结果, 从而选择最优预处理方法为MSC。 对MSC预处理后的光谱数据采用SPA及CARS进行特征波长提取, 得到与树皮含量相关性最高的波段组合, 并与全波段模型进行对比分析, 建立偏最小二乘回归(PLSR)模型。 从实验数据可以看出: MC, MSC, SNV 和1-Der四种预处理建立的偏最小二乘回归(PLSR)模型预测性能存在差异, 其中全波段MSC-PLSR模型的性能最好, 其校正决定系数R2C为0.994, 预测决定系数R2P为0.985, 校正均方根误差RMSEC为0.831%, 预测均方根误差RMSEP为1.336%。 通过SPA和CARS分别提取了37个和49个特征波段, 其中CARS模型更好, 其R2C值为0.991, R2P值为0.979, RMSEC值为0.885%, RMSEP值为1.335%。 实验结果表明: 高光谱成像系统结合相应算法可以实现对纤维树皮含量的检测, 该研究结果为超薄纤维板生产中树皮含量的检测提供了技术支持和理论参考, 可以有效实现纤维中树皮含量的定量检测, 创新建立了一种能够测定纤维板树皮含量的模型方法。
超薄纤维板 树皮含量 高光谱 特征波长 Ultra-thin fiberboard Bark content Hyperspectral Characteristic wavelength 
光谱学与光谱分析
2023, 43(10): 3266
作者单位
摘要
青海师范大学化学化工学院, 青海 西宁 810008
冬虫夏草卓越而神秘的补益效果一直为人们所关注, 尤其是它药食两用的药学价值和总砷超标引发了人们对冬虫夏草的诸多质疑。 分析冬虫夏草所含人体必须微量元素的水平, 对具有潜在毒性微量元素开展安全评价就显得非常必要。 依据原子发射光谱、 原子吸收光谱和原子荧光光谱对目标分析元素的适用性、 灵敏度、 精密度、 线性范围及抗常量元素强谱干扰能力选择较优分析方案, 选择基质干扰最小化的微波辅助消解程序, ICP-OES光谱仪分析Fe、 Zn、 Mn、 Cu、 Sr 五种元素含量, 石墨炉原子吸收法分析Pb元素含量, 原子荧光光谱法分析Se和As的含量。 分析研究了15个产地冬虫夏草中Fe、 Zn、 Mn、 Se、 Cu、 Sr、 As、 Pb等8种观测微量元素的平均含量。 结果表明: 与补肾药淫羊藿相比, 冬虫夏草中所含Mn、 Fe、 Zn、 Se均在较高水平, Cu和Sr含量在一般水平。 Pb的平均含量在药典限量以内, As的平均含量超出了药典限量。 Fe的平均含量在1 770.5 μg·g-1, Zn的平均含量在106.2 μg·g-1, Mn的平均含量在60.4 μg·g-1, Se的平均含量在0.055 μg·g-1, Cu的平均含量在17.4 μg·g-1, Sr的平均含量在4.4 μg·g-1, As的平均含量在11.42 μg·g-1, Pb的平均含量在2.33 μg·g-1。 玛沁冬虫夏草中的Mn和Fe含量最高, 分别达到了84.1和3 089.8 μg·g-1。 青海祁连冬虫夏草的Zn含量最高, 达到了163.0 μg·g-1。 治多冬虫夏草中的Se含量达到了0.083 μg·g-1。 冬虫夏草中Fe、 Mn、 As、 Zn的平均含量呈现显著的地区差异。
冬虫夏草 微量元素 平均含量 区域差异 Ophiocordyceps sinensis Trace elements Aaverage content Regional differences 
光谱学与光谱分析
2023, 43(10): 3247
作者单位
摘要
1 农业部农业遥感机理与定量遥感重点实验室, 北京市农林科学院信息技术研究中心, 北京 100097南京农业大学国家信息农业工程技术中心, 江苏 南京 210095
2 农业部农业遥感机理与定量遥感重点实验室, 北京市农林科学院信息技术研究中心, 北京 100097
3 河南工程学院土木工程学院, 河南 郑州 451191
作物氮含量影响作物的生长状况, 合适的施氮量可以促进作物生长和提高作物产量, 因此准确、 快速地监测作物的氮含量十分必要。 旨在探索将无人机成像高光谱获取的植被指数和光谱特征参数相结合以提高冬小麦关键生育期氮含量估算精度的潜力。 首先, 以无人机为遥感平台, 搭载高光谱传感器获取了冬小麦拔节期、 挑旗期、 开花期和灌浆期4个主要生育期的高光谱遥感影像, 并实测了各生育期的氮含量数据。 其次, 基于预处理后的高光谱影像, 提取冬小麦各生育期的冠层反射率数据, 并构造能较好反映作物氮素营养状况的12种植被指数和12种光谱特征参数。 然后, 计算了各光谱参数与冬小麦氮含量的相关性, 并筛选出各生育期与氮含量相关性较强的植被指数和光谱特征参数; 最后, 利用逐步回归分析(SWR)构建基于植被指数、 植被指数结合光谱特征参数的氮含量估算模型。 结果显示: (1)选取的大部分植被指数和光谱特征参数与冬小麦氮含量都有较高的相关性。 其中, 植被指数的相关性高于光谱特征参数; (2)基于单个植被指数或光谱特征参数估算冬小麦虽然可行, 但精度还有待进一步提高; (3)与单一植被指数或光谱特征参数相比, 植被指数结合光谱特征变量利用SWR方法构建的氮含量估算模型的精度和稳定性更高(拔节期: 建模R2=0.64, RMSE=24.68%, NRMSE=7.96%, 验证R2=0.77, RMSE=23.13%, NRMSE=7.81%; 挑旗期: 建模R2=0.81, RMSE=15.79%, NRMSE=7.41%, 验证R2=0.84, RMSE=15.10%, NRMSE=7.08%; 开花期: 建模R2=0.78, RMSE=9.88%, NRMSE=5.66%, 验证R2=0.85, RMSE=9.12%, NRMSE=4.76%; 灌浆期: 建模R2=0.49, RMSE=13.68%, NRMSE=9.85%, 验证R2=0.40, RMSE=18.29%, NRMSE=14.73%)。 研究结果表明, 结合无人机成像高光谱获取的植被指数和光谱特征参数构建的冬小麦氮含量估算模型精度和稳定性较高, 研究结果可为冬小麦氮含量的空间分布和精准管理提供参考。
无人机 冬小麦 高光谱 氮含量 逐步回归 光谱特征参数 Unmanned aerial vehicle Winter wheat Hyperspectral Nitrogen content Stepwise regression Spectral feature parameters 
光谱学与光谱分析
2023, 43(10): 3239
作者单位
摘要
1 新疆农业大学数理学院, 新疆 乌鲁木齐 830052
2 新疆农业科学院综合试验场, 新疆 乌鲁木齐 830013
3 新疆农业大学机电工程学院, 新疆 乌鲁木齐 830052
可溶性固形物含量(SSC)是反映苹果品质和成熟度的重要生理指标, 能够用于苹果品质分析和成熟度预测。 以新疆阿克苏冰糖心红富士苹果为研究对象, 从果实膨大定形期至完熟期, 以等间隔周期3 d采摘样本, 测其380~1 100 nm的可见/近红外光谱和SSC, 共552个样本。 然后融合分数阶微分(FD)及置换重要性-随机森林(PIMP-RF)算法, 构建成熟期苹果SSC预测的集成学习模型。 结果表明, 基于PLS模型优选的分数阶微分阶次为0阶、 0.4阶、 1.1阶和1.6阶, 且通过PIMP-RF算法进行特征重要性和可解释性分析结果显示, 利用可见/近红外光谱预测成熟期苹果SSC的关键波长主要为可见光波段, 这为今后研发新疆冰糖心红富士苹果的快速无损检测设备提供参考; 基于分数阶微分技术和PIMP-RF算法构建的成熟期苹果SSC集成学习模型具有很好的预测能力, 其训练集的相关系数r等于0.989 2, 平均绝对误差MAE等于0.241 2, 均方根误差RMSE等于0.309 1, 平均绝对百分误差等于0.018 3; 测试集的相关系数r等于0.903 8, 平均绝对误差MAE等于0.549 9, 均方根误差RMSE等于0.740 8, 平均绝对百分误差等于0.043 4, 相比于FD0-PIMP-RF、 FD0.4-PIMP-RF、 FD1.1-PIMP-RF和FD1.6-PIMP-RF模型, 集成学习模型为最优。 故而, 集成分数阶微分技术与PIMP-RF算法, 结合可见近红外光谱技术可有效地实现成熟期苹果的可溶性固形物含量预测。
可见/近红外光谱 分数阶微分 置换重要性-随机森林 K近邻(KNN)回归 可溶性固形物含量 Visible/near-infrared spectrum Fractional differential Permutation importance-random forest K-nearest neighbors (KNN) regression Soluble solids content 
光谱学与光谱分析
2023, 43(10): 3059
作者单位
摘要
新疆师范大学地理科学与旅游学院, 新疆 乌鲁木齐 830054新疆干旱区湖泊环境与资源实验室, 新疆 乌鲁木齐 830054
高光谱分析能够高效的估算土壤有机碳含量, 连续小波变换(CWT), 在高光谱数据的噪声去除和有效信息提取方面具有独特优势, 但是经过连续小波变换后的光谱数据被分解为多个尺度, 单一分解尺度信息不能代表不同分解尺度信息, 如何充分利用多分解尺度的小波系数, 成为高光谱估算土壤有机碳含量的难题。 博斯腾湖是我国最大的内陆淡水湖, 湖滨绿洲作为重要的水陆交错带, 具有独特的空间结构和时间结构, 在维持和恢复湖泊生态系统健康方面发挥着重要作用。 以博斯腾湖湖滨绿洲为研究区, 于2020年10月采集138份深度为0~20 cm表层土壤样本, 剔除3个异常值样品, 得到135个有效样品, 室外采集土壤样本光谱, 并通过重铬酸钾-外加热法测定土壤有机碳含量; 将土壤样本的光谱反射率进行Savitzky-Golay平滑滤波处理, 以Gaussian4为小波基函数进行连续小波变换, 将土壤高光谱数据转换为10个分解尺度的小波系数。 利用相关性分析法(CC)、 稳定自适应重加权采样(sCARS)、 竞争自适应重加权采样(CARS)、 连续投影算法(SPA)、 遗传算法(GA)等5种特种波段筛选方法进一步降低噪音, 消除冗余信息, 逐尺度计算小波系数的均方根作为小波能量特征(EF), 将10个尺度的小波能量特征组成小波能量特征向量(EFV), 基于小波能量特征向量建立BP神经网络模型(BPNN)。 结果表明, 连续小波变换可以有效提高光谱反射率与土壤有机碳含量间的相关性, 1~3分解尺度相关性较差, 4~10分解尺度的相关性较好, 相关系数平均值提升43.66%, 相关系数最大值平均提升67.93%。 CC算法筛选的特征波段主要分布于在400~1 500 nm可见光及近红外短波; sCARS、 CARS算法筛选的特征波段集中于1 500~2 500 nm近红外长波; SPA算法筛选的特征波段集中于760~2 500 nm近红外波段; GA算法得到的特征波段基本均匀分布于400~2 500 nm。 高光谱小波能量特征向量EFV可以较好估算湖滨绿洲表层土壤有机碳含量, 6种模型的训练集与验证集R2平均值分别为0.73、 0.74, RMSE平均值分别为7.64、 7.28, RPD平均值为1.95。 模型精度表现为, CC-EFV-BPNN>sCARS-EFV-BPNN>Full-spectrum-EFV-BPNN>CARS-EFV-BPNN>GA-EFV-BPNN>SPA-EFV-BPNN。 连续小波变换结合特征变量筛选方法, 提取小波能量特征向量EFV, 有效降低光谱数据维度与高光谱小波能量特征向量模型复杂度, 对于快速估算表层土壤有机碳含量具有重要参考价值。
土壤有机碳含量 小波能量特征向量 分解尺度 特征波段筛选 湖滨绿洲 Soil organic carbon content Wavelet energy feature vector Decomposition scale Characteristic band screening Lakeside Oasis 
光谱学与光谱分析
2023, 43(12): 3853

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!