作者单位
摘要
1 西安应用光学研究所,陕西 西安 710065
2 中国人民解放军 93427部队
反射式高分辨力光学系统是未来机载望远系统的发展方向。当光学系统工作在航空平台,由于受温度变化、振动冲击等因素的影响,光学系统将存在失调误差,需要对其进行空中校正。建立了反射镜失调量与泽尼克(Zernike)系数之间的非线性函数数学模型,采用Bhattacharyya系数方法去除相关性强的失调量,减少空中装调的复杂程度,增加可靠性。经过校正某同轴三反消像散系统,计算结果表明,系统的波像差均方根值(RMS)减小到0.025 λ,与设计值相差小于0.014 λ,满足空中装调需求。
机载光学系统 失调 空中校正 Zernike系数 airborne optical system misalignment aerial correction Zernike coefficient 
应用光学
2023, 44(4): 763
作者单位
摘要
北京空间机电研究所,北京 100094
共轴三反光学系统是空间光学遥感器常用的设计形式,以“高分一号”遥感卫星高分辨率相机装调为例,对共轴三反系统计算机辅助装调技术进行了研究。提出以主镜光轴为装调基准,通过调整三镜控制系统视场和调整次镜控制系统像差的装调方法,分析了次镜和三镜的失调量与Zernike系数变化关系,由光学设计软件求得系统灵敏度矩阵,用于指导系统装调工作,提高了装调精度,缩短了装调周期。测试结果表明:光学系统各视场Zernike系数优于0.05λ,系统波相差RMS值优于0.06λ,系统通过在轨成像测试,图像清晰,层次丰富。
计算机辅助装调 共轴三反系统 Zernike系数 遥感卫星 computer-aided alignment coaxial three-mirror optical system Zernike coefficient remote sensing satellite 
应用光学
2020, 41(5): 911
作者单位
摘要
1 长春理工大学 光电工程学院, 长春 130022
2 上海理工大学 光电信息与计算机工程学院, 上海 200093
3 苏州慧利仪器有限责任公司, 江苏 苏州 215123
4 苏州维纳仪器有限责任公司, 江苏 苏州 215123
5 上海市计量测试研究院 机械与制造计量技术研究所, 上海201203
基于Zernike多项式波前拟合法, 提出计算离焦位置任意波长透射波前Zernike系数的算法, 在聚焦位置Zernike系数基础上补偿离焦距离内Zernike系数变化量.以典型的消色差望远物镜为例, 根据设计波长及权重优化其工作位置, 计算不同波长的聚焦位置与工作位置的离焦量, 使用该算法验证消色差系统工作位置任意波长Zernike系数.与在工作位置直接使用Conrady-Zernike公式对比表明, 该算法对于与位置有关的Zernike系数计算效果明显, Z1的绝对误差由6.78降低到了1.41, Z4的绝对误差由6.83降低到了1.45.
波前检测 Zernike系数 离焦 波长 消色差 Wavefront testing Zernike coefficients Defocus Wavelength Achromatic 
光子学报
2018, 47(7): 0712002
作者单位
摘要
1 长春理工大学光电工程学院, 吉林 长春 130022
2 上海理工大学光电信息与计算机工程学院, 上海 200093
3 苏州慧利仪器有限责任公司, 江苏 苏州 215123
波前像差可以很好地反映光学系统的性能,波前检测结果通常用一组Zernike多项式线性组合表示。透射式光学系统波前需要在特定波长下检测,由于检测仪器的限制,目前只有少数波长的波前可以得到准确检测。提出一种新的思路,通过分析透射波前Zernike系数与波长的函数关系,间接反映波前随波长的变化规律,从而实现任意波长波前的检测。利用Zemax对光学系统建模,采集光学系统在不同波长时的波前Zernike系数,通过Matlab曲线拟合工具寻找Zernike系数与波长曲线可能存在的函数形式,并最终确定了Conrady-Zernike公式。模拟的光学系统使用这种解析式计算所得Zernike系数的最大误差在1%以内。结果表明透射式光学系统的波前Zernike系数与波长之间基本符合Conrady-Zernike公式的关系。
测量 波前检测 Conrady-Zernike公式 曲线拟合 Zernike系数 波长 
光学学报
2018, 38(2): 0212002
作者单位
摘要
中国科学院长春光学精密机械与物理研究所 航空光学成像与测量技术研究部,吉林 长春 130033
R-C光学系统是现代光学工程中常用的光学系统,以某一R-C光学系统为例,对其计算机辅助装调技术进行了研究。分析了R-C系统装调理论,确定以主镜为装调基准,调整次镜五个自由度的装调方法,建立起次镜失调量与系统Zernike系数的关系,以此指导装调工作,达到明确装调方向、缩短装调周期的目的。整机光学系统的波像差RMS值优于1/10波长,达到了成像质量的要求。对相机进行实验室和地面外场成像,获得的图像图像清晰,层次丰富,验证了装调工作的正确性。
R-C光学系统 计算机辅助装调 Zernike系数 波像差 R-C optical system computer aided alignment Zernike coefficient wavefront error 
红外与激光工程
2016, 45(3): 0318001
作者单位
摘要
1 中国科学院 长春光学精密机械与物理研究所,吉林 长春 130033
2 中国科学院大学,北京 100049
3 长春奥普光电技术股份有限公司,吉林 长春 130033
为了在较大失调范围内准确求解离轴梅逊式无焦卡塞格林望远镜元件的失调量,提出了基于改进的灵敏度矩阵模型的计算机辅助装调方法。分析了传统灵敏度矩阵法的原理及局限性,并在传统方法的数学模型中加入二次修正项,对传统计算机辅助装调技术进行了改进。针对离轴望远镜系统,分析了次镜失调状态下系统的像差特性,分别采用改进模型和传统模型对系统失调量与像差间的映射关系进行近似,并对失调望远镜系统进行仿真装调。仿真装调结果表明: 在次镜偏心为±8 mm、倾斜为±1.5°的失调范围内,传统方法计算得到的次镜x、y、z偏心量和α、β倾斜量均方根误差分别是: 2.689 mm、2.494 mm、0.194 mm和0.500°、0.525°;而改进方法对应的计算结果为: 0.404 mm、0.323 mm、0.047 mm和0.064°、0.065°,显示改进后的灵敏度矩阵方法的失调量求解准确度大幅优于传统方法。最终,采用改进方法对望远镜进行装调,得到了轴上视场波像差(均方根值RMS)为0.056λ(λ=632.8 nm),边缘视场波像差RMS均优于0.1λ的良好装调结果。 得到的结果满足设计要求。
离轴望远镜 计算机辅助装调 灵敏度矩阵 失调 Zernike系数 off-axis telescope computer-aided alignment sensitivity matrix misalignment Zernike coefficient 
光学 精密工程
2015, 23(9): 2595

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!