Author Affiliations
Abstract
1 中国科学院上海光学精密机械研究所高功率激光物理重点实验室, 上海 201800
2 中国科学院中国工程物理研究院高功率激光物理联合实验室, 上海 201800
3 中国科学院大学, 北京 100049
Beam-guiding system (BGS) has two functions, one shifts the array arrangement of the main laser to the spherical irradiation structure which meets the requirements of shooting laser, the other ensures that all the laser beams transmit to the target chamber center with the same light path length. Main issues are focused on the transmission models of the main lasers and shooting lasers and the switch manner between them. Combining the symmetric properties of the beam port distribution on the target chamber, the transmission sub-unit is proposed to simplify the system arrangement. Firstly, considering the quantity and style of the total mirrors and the space size of the target area, the specific transmission models in a transmission sub-unit and the symmetrical division of target area are determined. Then, two possible transmission models for main lasers and shooting lasers are obtained with the constraints of laser polarization and no intersection among beams during propagation. The switch manner is calculated with a stratified baseline algorithm and the relationship between the image and object of the propagation lasers. In this manner, the entire BGS geometric arrangement is figured out.
激光器 惯性约束核聚变 靶场 光路导引系统 lasers inertial confinement fusion target area beam guiding system 
Collection Of theses on high power laser and plasma physics
2016, 14(1): 1101001
Author Affiliations
Abstract
1 中国科学院上海光学精密机械研究所高功率激光物理重点实验室, 上海 201800
2 中国科学院中国工程物理研究院高功率激光物理联合实验室, 上海 201800
3 中国科学院大学, 北京 100049
Beam-guiding system (BGS) has two functions, one shifts the array arrangement of the main laser to the spherical irradiation structure which meets the requirements of shooting laser, the other ensures that all the laser beams transmit to the target chamber center with the same light path length. Main issues are focused on the transmission models of the main lasers and shooting lasers and the switch manner between them. Combining the symmetric properties of the beam port distribution on the target chamber, the transmission sub-unit is proposed to simplify the system arrangement. Firstly, considering the quantity and style of the total mirrors and the space size of the target area, the specific transmission models in a transmission sub-unit and the symmetrical division of target area are determined. Then, two possible transmission models for main lasers and shooting lasers are obtained with the constraints of laser polarization and no intersection among beams during propagation. The switch manner is calculated with a stratified baseline algorithm and the relationship between the image and object of the propagation lasers. In this manner, the entire BGS geometric arrangement is figured out.
激光器 惯性约束核聚变 靶场 光路导引系统 lasers inertial confinement fusion target area beam guiding system 
Collection Of theses on high power laser and plasma physics
2016, 14(1): 1101001
Author Affiliations
Abstract
National Laboratory on High Power Laser and Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Science, Shanghai 201800, China
With the increasing number of laser beams, the main difficulty in arranging beam guiding systems (BGSs) involves determining the corresponding relationships between the output and input ports to realize the identified light path length of all beams. Given the basic constraints of geometric arrangement, a BGS model is established, and a base-line algorithm is proposed to address the difficulty mentioned above. Boundary conditions of target area and target chamber are discussed to increase the number of laser beams, and a maximum value exists for a specific target area. Finally, the compatibility of a cylindrical hohlraum target chamber with a spherical hohlraum is analyzed, and a moveable final optics assembly is proposed to execute the switch between the two different targets.
beam guiding system laser drivers spherical hohlraum target areas 
Collection Of theses on high power laser and plasma physics
2015, 13(1): e12
Author Affiliations
Abstract
National Laboratory on High Power Laser and Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Science, Shanghai 201800, China
With the increasing number of laser beams, the main difficulty in arranging beam guiding systems (BGSs) involves determining the corresponding relationships between the output and input ports to realize the identified light path length of all beams. Given the basic constraints of geometric arrangement, a BGS model is established, and a base-line algorithm is proposed to address the difficulty mentioned above. Boundary conditions of target area and target chamber are discussed to increase the number of laser beams, and a maximum value exists for a specific target area. Finally, the compatibility of a cylindrical hohlraum target chamber with a spherical hohlraum is analyzed, and a moveable final optics assembly is proposed to execute the switch between the two different targets.
beam guiding system laser drivers spherical hohlraum target areas 
High Power Laser Science and Engineering
2015, 3(1): e12

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!