作者单位
摘要
大连理工大学机械工程学院,辽宁 大连 116024
为了减小激光切割碳纤维复合材料热影响区的宽度,采用响应曲面法的Box-Behnken试验设计,以激光入口处的热影响区宽度为响应,建立了激光入口处热影响区宽度的回归方程。研究了激光功率、扫描速度、辅助气体压力、焦点位置等因素以及其交互作用对响应的影响。根据回归方程和实际的切割效果优化了工艺参数。试验结果表明,激光入口处热影响区宽度影响因素的重要程度依次为激光功率、扫描速度、焦点位置、辅助气体压力。最佳工艺参数为激光功率170 W、扫描速度1.5 m/min、辅助气体压力为0.6 MPa,焦点置于试件上表面。对最佳工艺参数进行试验验证,结果表明,激光入口处热影响区宽度为486.13 μm,回归方程的预测平均误差为5.3%。
激光切割 碳纤维复合材料 热影响区 参数优化 
激光与光电子学进展
2023, 60(13): 1314002
作者单位
摘要
中国民航大学中欧航空工程师学院,天津 300300
为研究激光去除复合材料基体表面漆膜的工艺规律并优化激光除漆参数,采用纳秒脉冲激光器对碳纤维复合材料表面的环氧树脂漆进行去除;基于响应面优化法,以除漆表面微观形貌、纤维暴露百分比、单脉冲除漆深度及微观不平度十点高度为指标对激光参数的影响规律进行分析并进行参数优化。结果表明:激光功率P、重复频率f、扫描速度v分别对纤维暴露百分比、单脉冲除漆深度、微观不平度十点高度的影响最为显著。采用低频(f<25 kHz)高功率(P>14 W)激光慢速(v<130 mm/s)扫描可以获得更少的漆层残留、更高的纤维暴露百分比及更高的除漆效率,采用中频(40 kHz<f<60 kHz)低功率(P<11 W)激光快速(v>180 mm/s)扫描可以获得更接近标准值(45~55 μm)的微观不平度十点高度,可以保证除漆质量。最终得到最佳工艺参数组合为:激光功率14.4 W,扫描速度200 mm/s,重复频率20 kHz。本研究可为今后复合材料基体除漆工艺参数的确定提供参考。
激光技术 激光除漆 碳纤维复合材料 工艺参数 响应面优化 
中国激光
2023, 50(12): 1202208
作者单位
摘要
长光卫星技术有限公司, 吉林 长春130031
针对吉林一号某轻型空间遥感相机的任务需求,以碳纤维复合材料的薄壁筒与桁架杆一体式成型为设计思路,基于拓扑优化、尺寸优化以及铺层优化设计了一种高稳定性的次镜支撑结构。工程分析和实验结果表明一体式碳纤维次镜支撑结构具有较好的结构稳定性,整体质量仅为1.3 kg,其在轨成像质量良好,这进一步验证了一体式碳纤维次镜支撑结构的可靠性和设计方法的正确性。
遥感 碳纤维复合材料 支撑结构 稳定性 
光学学报
2022, 42(5): 0522001
作者单位
摘要
1 宁波大学机械工程与力学学院, 浙江 宁波315211
2 中国科学院宁波材料技术与工程研究所, 浙江 宁波 315201
采用激光搅拌焊接对7075铝合金与碳纤维增强热塑性复合材料(CFRTP)进行对接焊,分析了焊接工艺参数对接头连接强度的影响规律;对焊接接头的力学性能进行了测试,分析了影响接头强度的因素和接头的失效形式。结果表明:焊接速度对接头强度的影响最大,之后依次为离焦量、激光功率、搅拌振幅、搅拌频率和夹具气压;在最佳参数下得到的接头的连接强度为11.7 MPa,在此情况下接头断裂发生在CFRTP表层,接头的失效形式为CFRTP基体撕裂;测量了焊接时接头处的温度变化规律,温度过高或过低都会降低接头的强度;适当降低焊接速度能延长接头的高温存在时间,增加接头强度。
激光技术 碳纤维复合材料 7075铝合金 激光对接焊 焊接参数 
中国激光
2020, 47(10): 1002003
作者单位
摘要
中国工程物理研究院流体物理研究所, 四川 绵阳 621900
以跨音速风洞为平台, 开展了表面亚音速气流环境下, 连续激光辐照碳纤维复合材料实验研究。研究表明, 无气流时, 喷出的热分解产物会降低激光能量透过率; 有气流时, 气流快速带走热分解产物, 并对基体分解后裸露的碳纤维材料进行冲刷和剥离, 加速了材料的烧蚀。表面亚音速气流的加载有利于激光对碳纤维复合材料的破坏, 且马赫数越大越有利; 在激光总能量不变的情况下, 适当降低激光功率密度, 延长激光作用时间, 有利于激光对碳纤维复合材料的破坏。
激光辐照 碳纤维复合材料 激光烧蚀 laser irradiation carbon fiber composites laser ablation 
应用激光
2014, 34(2): 118

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!