Author Affiliations
Abstract
1 Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO 80523, USA
2 XUV Lasers Inc., PO Box 273251, Fort Collins, CO 80527, USA
3 Department of Physics, Colorado State University, Fort Collins, CO 80523, USA
Recent results in the development of diode-driven high energy, high repetition rate, picosecond lasers, including the demonstration of a cryogenic Yb:YAG active mirror amplifier that produces 1.5 J pulses at 500 Hz repetition rate (0.75 kW average power) are reviewed. These pulses are compressed resulting in the generation of ${\sim}5~\text{ps}$ duration, 1 J pulses with 0.5 kW average power. A full characterization of this high power cryogenic amplifier, including at-wavelength interferometry of the active region under ${>}1~\text{kW}$ average power pump conditions, is presented. An initial demonstration of operation at 1 kW average power (1 J, 1 kHz) is reported.
advanced laser technology and applications diode-pumped solid-state laser and applications high power laser high power laser related laser components laser amplifiers 
High Power Laser Science and Engineering
2018, 6(1): 01000e11
Author Affiliations
Abstract
1 GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
2 Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
3 Department of Physics & Astronomy, College of Science, King Saud University, Riyadh, Saudi Arabia
The Laboratory for Intense Lasers (L2I) is a research centre in optics and lasers dedicated to experimental research in high intensity laser science and technology and laser plasma interaction. Currently the laboratory is undergoing an upgrade with the goal of increasing the versatility of the laser systems available to the users, as well as increasing the pulse repetition rate. In this paper we review the current status of the laser research and development programme of this facility, namely the upgraded capability and the recent progress towards the installation of an ultrashort, diode-pumped OPCPA laser system.
diode-pumped solid-state laser and applications femtosecond laser and applications frequency conversion laser amplifiers nonlinear optics 
High Power Laser Science and Engineering
2017, 5(1): 010000e2
Author Affiliations
Abstract
1 Hilase, Institute of Physics AS CR, Za Radnicí 828, 252 41 Dolní Bˇreˇzany, Czech Republic
2 LIDARIS Ltd., Saul˙etekio Al. 10, LT-10223, Vilnius, Lithuania
3 Laser Research Center, Vilnius University, Sauletekio Al. 10, LT-10223 Vilnius, Lithuania
4 LUXOR Laboratory, CNR IFN, Via Trasea 7, 35131, Padova, Italy
5 Crytur Ltd., Palackeho 175, 511 01 Turnov, Czech Republic
Further advancement of high-energy pulsed lasers requires a parallel development of appropriate optical components. Several different optical components, such as mirrors and antireflection-coated windows, which are essential for the design of HiLASE high average power lasers were tested. The following paper summarizes results on the measurements of laser-induced damage threshold of such components, and clearly shows their capabilities and limitations for such a demanding application.This work is co-financed by the European Regional Development Fund, the European Social Fund and the state budget of the Czech Republic (project HiLASE: CZ.1.05/2.1.00/01.0027, project DPSSLasers: CZ.1.07/2.3.00/20.0143, project Postdok: CZ.1.07/2.3.00/30.0057). This research was partially supported by the grant RVO 68407700.
diode-pumped solid-state laser and applications diode-pumped solid-state laser and applications laser- induced damage laser- induced damage 
High Power Laser Science and Engineering
2016, 4(1): 01000e11

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!