汤洋 1,2,*
作者单位
摘要
1 国家能源集团绿色能源与建筑研究中心, 北京 102211
2 北京低碳清洁能源研究院, 北京 102211
为在新型太阳能电池等先进光电器件中成功应用ZnO纳米柱阵列,需要以高沉积速率生长ZnO纳米柱,并能够对纳米柱的形貌与光电物理性质进行操控。使用电沉积方法制备ZnO纳米柱阵列,在主电解液中加入了六次甲基四胺,对所制备的ZnO纳米柱阵列的形貌与光电物理性质进行了测试分析。六次甲基四胺能够大幅提升ZnO纳米柱的生长速率,相比未使用六次甲基四胺的电解液配方,ZnO纳米柱的生长速率提高了356%。同时,纳米柱的直径与阵列密度得到有效降低,纳米柱间距增大至58 nm。六次甲基四胺的引入使ZnO纳米柱的光学带隙约红移了0.12 eV。在六次甲基四胺的作用下,ZnO纳米柱的斯托克斯位移减小0.15 eV,非辐射复合受到抑制。通过使用六次甲基四胺,实现了ZnO纳米柱的快速电沉积生长,同时实现了对纳米柱的光学带隙、近带边发射、斯托克斯位移、非辐射复合等光电物理性质的操控。
材料 纳米材料 氧化锌 六次甲基四胺 电沉积 快速生长 非辐射复合 
光学学报
2020, 40(16): 1616001
作者单位
摘要
中国工程物理研究院 激光聚变研究中心, 四川 绵阳 621900
采用无模板化学气相沉积法, 以二茂铁为催化剂, 二甲苯为碳源, 利用单温炉加热装置制备了定向碳纳米管阵列。运用扫描电子显微镜、透射电子显微镜、拉曼光谱和X射线衍射仪等对定向碳纳米管阵列的形貌、成分和物相进行细致的分析和表征。结果表明: 制得的碳纳米管阵列具有良好的定向性和多壁管状结构, 并且石墨化程度高; 碳纳米管中除碳元素外, 管中包含有少量以纳米颗粒和纳米线形式存在的铁及其化合物, 主要成分是铁和碳化铁。结合碳纳米管的制备和透射电子显微镜分析表征结果, 认为超长碳纳米管阵列的生长模式为底部生长方式, 即经历催化剂分解、催化、成核、长大、中毒、凝聚成粒和连接成线的循环过程, 正是由于碳源和催化剂的连续供应促成了碳纳米管阵列的快速定向生长。
碳纳米管阵列 快速生长 生长机制 化学气相沉积 aligned carbon nanotubes array fast growth growth mechanism chemical vapor deposition 
强激光与粒子束
2013, 25(5): 1161
作者单位
摘要
1 上海电力学院电力与自动化工程学院, 上海 200090
2 华东师范大学物理系和纳光电集成与先进装备教育部工程研究中心, 上海20006
3 北京交通大学发光与光信息技术教育部重点实验室, 北京100044
P3HT∶PCBM薄膜的快速和缓慢成膜过程能显著的改变异质结聚合物太阳能电池性能。 通过调节旋转时间以及薄膜退火前的间隔时间, 研究了P3HT∶PCBM混合薄膜缓慢生长所需最佳时间。 结果表明, 在转速800 r·min-1下旋涂薄膜, 经过50~80 s的旋涂, 接着放置样品薄膜30 min以上, 然后再对薄膜进行退火处理, 电池效率可以达到3%以上, 而快速成膜的电池效率只有1.8%左右。 合理的P3HT和PCBM相分离促进了相应载流子的跳跃和传输, 是提高电池效率的根本原因。 研究结果为准确掌控缓慢生长的混合薄膜提供了时间窗口。
聚合物太阳能电池 P3HT∶PCBM薄膜 快速成膜 缓慢成膜 Polymer solar cells P3HT∶PCBM film Fast growth Slow growth 
光谱学与光谱分析
2011, 31(10): 2684

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!