Yile Sun 1†Hongfei Zhu 2Lu Yin 3Hanmeng Wu 1[ ... ]Xu Liu 1,5,7
Author Affiliations
Abstract
1 Zhejiang University, College of Optical Science and Engineering, State Key Laboratory of Extreme Photonics and Instrumentation, Hangzhou, China
2 The Chinese University of Hong Kong, Department of Biomedical Engineering, Hong Kong, China
3 China Jiliang University, College of Optical and Electronic Technology, Hangzhou, China
4 Zhejiang University of Technology, Institute of Pharmacology, College of Pharmaceutical Sciences, Hangzhou, China
5 ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
6 Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics-MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Wuhan, China
7 Shanxi University, Collaborative Innovation Center of Extreme Optics, Taiyuan, China
Imaging three-dimensional, subcellular structures with high axial resolution has always been the core purpose of fluorescence microscopy. However, trade-offs exist between axial resolution and other important technical indicators, such as temporal resolution, optical power density, and imaging process complexity. We report a new imaging modality, fluorescence interference structured illumination microscopy (FI-SIM), which is based on three-dimensional structured illumination microscopy for wide-field lateral imaging and fluorescence interference for axial reconstruction. FI-SIM can acquire images quickly within the order of hundreds of milliseconds and exhibit even 30 nm axial resolution in half the wavelength depth range without z-axis scanning. Moreover, the relatively low laser power density relaxes the requirements for dyes and enables a wide range of applications for observing fixed and live subcellular structures.
optical imaging super-resolution microscopy fluorescence interference structured illumination microscopy 
Advanced Photonics
2023, 5(5): 056007
作者单位
摘要
重庆理工大学电气与电子工程学院, 重庆 400054
对荧光灯干扰下的室内可见光通信系统进行了实验测试,获得了基于开关键控(OOK)调制的室内可见光通信系统在荧光灯干扰下的接收信号时域波形,随后引入传输基带模型与5 m×5 m×3 m室内三维模型,获取室内误码率分布,分析了荧光灯干扰对室内可见光通信接收机性能的影响。结果显示,荧光灯干扰以加性噪声的形式表现在接收信号中,并导致接收信号产生类正弦的周期型信号畸变,且荧光灯干扰频谱覆盖范围较广,传输速率为10~1000 Mbit/s的信号均受影响;采用小波变换对信号进行降噪处理,结果表明,小波变换的尺度灵活性表现出消除荧光灯干扰的可能。
光通信 可见光通信 荧光灯干扰 类正弦畸变 小波变换 阈值收缩 
激光与光电子学进展
2020, 57(17): 170604
戴艳 1,2董作人 1,3,*刘铭晖 1,2辛国锋 1[ ... ]蔡海文 1
作者单位
摘要
1 中国科学院上海光学精密机械研究所中国科学院空间激光信息传输与探测技术重点实验室, 上海 201800
2 中国科学院大学, 北京 100049
3 南京简智仪器设备有限公司, 江苏 南京 210038
为消除拉曼光谱检测中样品装载容器的荧光背景干扰,利用样品拉曼信号光与容器产生的荧光不共焦的特性,设计了一种双轴共焦的检测光路结构。实验结果表明:来自容器的荧光干扰幅度出现数量级的衰减,拉曼信号光幅度下降了约30%;双轴共焦拉曼检测方法能够避免传统共轴共焦检测方法中拉曼信号光和荧光混合接收的问题,解决了荧光干扰对拉曼信号动态检测范围的限制,实现了对荧光材料容器装载样品拉曼信号的有效检测。
光谱学 荧光干扰 双轴共焦 拉曼光谱 
中国激光
2018, 45(7): 0711001
作者单位
摘要
中国计量大学光学与电子科技学院, 浙江 杭州 310018
在拉曼光谱分析中, 由于样品及污染物等常会产生强的荧光信号, 严重影响样品拉曼光谱信号的检测, 从而限制了该项技术的应用。文中综述了各种解决荧光干扰问题方法的原理、实现方式、性能特点, 对几种常见的荧光抑制方法(荧光淬灭法、光漂白法、紫外/红外光激发法、移频激发法、小波变换法)在不同领域的应用进行具体分析, 包括激发波长、荧光来源、荧光信号的变化、荧光抑制效果、对拉曼信号的影响等。不仅展现出每种方法的优势, 也说明了其局限性。
拉曼光谱 荧光干扰 抑制方法 
激光与光电子学进展
2018, 55(9): 090005

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!