Author Affiliations
Abstract
1 Centre Lasers Intenses et Applications (CELIA), Université de Bordeaux–CNRS–CEA, Talence cedex, France
2 ENEA, Fusion and Technology for Nuclear Safety and Security Department, C.R. Frascati, Frascati, Italy
3 AWE, Aldermaston, Reading, UK
4 Centre for Inertial Fusion Studies, Blackett Laboratory, Imperial College London, London, UK
5 Istituto Nazionale di Ottica, Consiglio Nazionale delle Ricerche (CNR-INO), Pisa, Italy
6 ETSIAE Universidad Politecnica de Madrid, Madrid, Spain
7 GSI-Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
8 Laboratoire pour l’Utilisation des Lasers Intenses (LULI), CNRS–Ecole Polytechnique, Palaiseau cedex, France
9 ALP, Le Barp, France and CEA/DAM Île de France, Bruyères le Châtel, Arpajon cedex, France
10 Instituto Fusión Nuclear “Guillermo Velarde” (IFN-GV), Universidad Politecnica de Madrid, Madrid, Spain
11 Central Laser Facility, STFC Rutherford Appleton Laboratory, Harwell Oxford, Oxfordshire, UK
12 Institute of Plasma Physics and Lasers, University Research and Innovation Centre, Hellenic Mediterranean University, Rethymno, Crete, Greece
13 Department of Electronic Engineering, School of Engineering, Hellenic Mediterranean University, Chania, Crete, Greece
14 Extreme Light Infrastructure ERIC, ELI-Beamlines Facility, Dolní Břežany, Czech Republic
15 Centro de Laseres Pulsados (CLPU), Parque Cientifico, Villamayor, Salamanca, Spain
The recent achievement of fusion ignition with laser-driven technologies at the National Ignition Facility sets a historic accomplishment in fusion energy research. This accomplishment paves the way for using laser inertial fusion as a viable approach for future energy production. Europe has a unique opportunity to empower research in this field internationally, and the scientific community is eager to engage in this journey. We propose establishing a European programme on inertial-fusion energy with the mission to demonstrate laser-driven ignition in the direct-drive scheme and to develop pathway technologies for the commercial fusion reactor. The proposed roadmap is based on four complementary axes: (i) the physics of laser–plasma interaction and burning plasmas; (ii) high-energy high repetition rate laser technology; (iii) fusion reactor technology and materials; and (iv) reinforcement of the laser fusion community by international education and training programmes. We foresee collaboration with universities, research centres and industry and establishing joint activities with the private sector involved in laser fusion. This project aims to stimulate a broad range of high-profile industrial developments in laser, plasma and radiation technologies along with the expected high-level socio-economic impact.
education and training fusion reactor technology high-energy laser high repetition rate laser inertial confinement fusion laser–plasma interaction public–private partnership radiation resistant materials 
High Power Laser Science and Engineering
2023, 11(6): 06000e83
作者单位
摘要
上海交通大学 机械与动力工程学院 上海 200240
聚变反应堆发生失真空事故的情况下氚会泄漏到环境中,氚大气扩散模拟是聚变堆事故后果评价的重要内容。基于高斯烟团模型以及Pasquill稳定度分类方法,考虑重力沉降、烟气抬升、风速等因素的影响,建立了适用于事故下瞬态分析的大气扩散模型,在高斯烟团模型中加入修正了像源贡献的地面反射系数,提高了模型对于地面边界处干沉降的计算效果。选取加拿大氚气释放实验和美国萨凡那河工厂氚释放事故验证了所建立模型的准确性,模型的计算结果与HotSpot 3.0和UFOTRI软件的精度相当。选取国际热核聚变实验堆(International Thermonuclear Experimental Reactor,ITER)的失真空事故作为研究对象,分析了氚的分阶段释放、风速以及释放高度对氚扩散分布的影响。结果表明:氚的分阶段释放会导致沿下风向出现两个高放射性区域;释放高度和风速的增加会强化氚在大气中的扩散行为,从而减弱放射性在近场的积聚。
聚变堆  大气扩散 放射性后果 Fusion reactor Tritium Atmospheric dispersion Radioactive consequences 
核技术
2023, 46(2): 020605
Author Affiliations
Abstract
1 Graduate School of Engineering, Utsunomiya University, Yohtoh 7-1-2, Utsunomiya, 321-8585, Japan
2 CORE (Center for Optical Research and Education), Utsunomiya University, Yohtoh 7-1-2, Utsunomiya, 321-8585, Japan
3 Department of Physics, Technical University of Varna, Ulitska, Studentska 1, Varna, Bulgaria
In this review paper on heavy ion inertial fusion (HIF), the state-of-the-art scientific results are presented and discussed on the HIF physics, including physics of the heavy ion beam (HIB) transport in a fusion reactor, the HIBs-ion illumination on a direct-drive fuel target, the fuel target physics, the uniformity of the HIF target implosion, the smoothing mechanisms of the target implosion non-uniformity and the robust target implosion. The HIB has remarkable preferable features to release the fusion energy in inertial fusion: in particle accelerators HIBs are generated with a high driver efficiency of ~30%-40%, and the HIB ions deposit their energy inside of materials. Therefore, a requirement for the fusion target energy gain is relatively low, that would be ~50-70 to operate a HIF fusion reactor with the standard energy output of 1 GWof electricity. The HIF reactor operation frequency would be ~10-15 Hz or so. Several-MJ HIBs illuminate a fusion fuel target, and the fuel target is imploded to about a thousand times of the solid density. Then the DT fuel is ignited and burned. The HIB ion deposition range is defined by the HIB ions stopping length, which would be ~1 mm or so depending on the material. Therefore, a relatively large density-scale length appears in the fuel target material. One of the critical issues in inertial fusion would be a spherically uniform target compression, which would be degraded by a non-uniform implosion. The implosion non-uniformity would be introduced by the Rayleigh-Taylor (R-T) instability, and the large densitygradient- scale length helps to reduce the R-T growth rate. On the other hand, the large scale length of the HIB ions stopping range suggests that the temperature at the energy deposition layer in a HIF target does not reach a very-high temperature: normally about 300 eV or so is realized in the energy absorption region, and that a direct-drive target would be appropriate in HIF. In addition, the HIB accelerators are operated repetitively and stably. The precise control of the HIB axis manipulation is also realized in the HIF accelerator, and the HIB wobbling motion may give another tool to smooth the HIB illumination non-uniformity. The key issues in HIF physics are also discussed and presented in the paper.
Heavy ion inertial fusion Heavy ion inertial fusion Heavy ion fusion reactor system Heavy ion fusion reactor system Fusion fuel target implosion Fusion fuel target implosion Implosion dynamics Implosion dynamics Heavy ion beam transport Heavy ion beam transport Rayleigh- Taylor instability stabilization Rayleigh- Taylor instability stabilization Robust fusion system Robust fusion system 
Matter and Radiation at Extremes
2016, 1(2): 89
作者单位
摘要
中国工程物理研究院 核物理与化学研究所, 四川 绵阳 621900
等离子体排灰气处理系统是聚变反应装置氘氚燃料循环系统中极为重要的环节。该系统的主要功能是从反应后的排灰气中回收剩余的氘氚燃料, 并处理壁材料净化、系统维护等非正常运行模式以及分析与辅助系统中产生的含氚杂质气体。介绍了国际上聚变堆等离子体排灰气的组成和主要处理工艺, 简述了钯膜分离、膜反应及催化反应-膜分离、电解反应、分解反应及氧化-分解等各关键单元技术的基本原理和研究进展, 并进行了分析和评价, 提出了目前国内在该领域需要开展的研究工作。
聚变反应堆 等离子体排灰气处理 钯膜分离 催化反应 膜反应器 电解反应 fusion reactor Tokamak exhaust processing palladium membrane permeation catalytic reaction membrane reactor electrolysis reaction 
强激光与粒子束
2015, 27(1): 016009
作者单位
摘要
中国工程物理研究院 核物理与化学研究所, 四川 绵阳 621900
将LiAlO2陶瓷小球置于裂变反应堆中辐照, 采用热解吸技术研究该类产氚材料的堆外放氚特性, 考察了升温速率、载气组分、催化活性元素和提氚温度对氚释放行为的影响;采用电子自旋磁共振(ESR)实验技术研究了辐照缺陷的顺磁特征。结果表明:LiAlO2中氚的扩散速度慢, 热解吸活化能高, 氚释放主要分布在750~1000 K;表面氢同位素交换反应贡献大, 释氚形态受载气条件的影响较大, 当氦气中添加H2时, 会增大HTO转化成HT的比例;中子辐照会在LiAlO2中诱生F+,O-和O2-等缺陷色心, 其退火湮灭行为与氚释放过程存在一定关系。
氚增殖剂 放氚行为 氚燃料循环 聚变堆 LiAlO2 LiAlO2 tritium breeder tritium release behavior tritium fuel cycle fusion reactor 
强激光与粒子束
2015, 27(1): 016005
作者单位
摘要
1 大连理工大学 材料科学与工程学院, 辽宁 大连 116023
2 中国科学院 大连化学物理研究所, 中国科学院 化学激光重点实验室, 辽宁 大连 116023
研究了块体金属玻璃(块体非晶合金)Zr65Al7.5Ni10Cu17.5, Co61.2B26.2Si7.8Ta4.8和金属多晶钼3种第一镜材料经低温等离子体H和Ar辐照后的表面特性变化。结果表明,两种块体金属玻璃的抗H等离子体溅射能力与其成分有关。随着等离子体辐照时间的增加,金属多晶钼和块体金属玻璃Zr65Al7.5Ni10Cu17.5的表面粗糙度增大,镜面反射率降低;而块体金属玻璃Co61.2B26.2Si7.8Ta4.8的表面粗糙度减小,镜面反射率升高。X射线衍射仪(XRD)分析表明,块体金属玻璃在离子体溅射过程中,表面微结构具有自修复性。
第一镜 块体金属玻璃 聚变堆 等离子体溅射 镜面反射率 first mirror bulk metallic glasses fusion reactor plasma sputtering specular reflectivity 
强激光与粒子束
2011, 23(12): 3329

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!