强激光与粒子束, 2015, 27 (1): 016005, 网络出版: 2015-01-26  

LiAlO2陶瓷小球的堆外放氚行为

Out-of-pile tritium release of LiAlO2 pebble
作者单位
中国工程物理研究院 核物理与化学研究所, 四川 绵阳 621900
摘要
将LiAlO2陶瓷小球置于裂变反应堆中辐照, 采用热解吸技术研究该类产氚材料的堆外放氚特性, 考察了升温速率、载气组分、催化活性元素和提氚温度对氚释放行为的影响;采用电子自旋磁共振(ESR)实验技术研究了辐照缺陷的顺磁特征。结果表明:LiAlO2中氚的扩散速度慢, 热解吸活化能高, 氚释放主要分布在750~1000 K;表面氢同位素交换反应贡献大, 释氚形态受载气条件的影响较大, 当氦气中添加H2时, 会增大HTO转化成HT的比例;中子辐照会在LiAlO2中诱生F+,O-和O2-等缺陷色心, 其退火湮灭行为与氚释放过程存在一定关系。
Abstract
It is important to understand the tritium properties of tritium breeding materials from the viewpoints of a fusion reactor blanket, the tritium fuel cycle and tritium safety. Out-of-pile tritium release experiments were performed to investigate the effects of heating rate, purge gas composition and platinum catalytic metal on the tritium release behaviors of the lithium aluminate (LiAlO2) ceramic pebbles after neutron-irradiation, and the ESR measuring technique was applied to analyzing the paramagnetic characteristics of irradiation defects. The experimental results show that the bred tritium requires a high temperature region of 750-1000 K to be liberated from LiAlO2 ceramic pebbles corresponding to the slow diffusivity and high desorption activity energy. Catalytic metals and hydrogen in the purge gas can enhance the hydrogen isotope exchange reaction between the tritium on the solid surface and the hydrogen in the purge gas, and accelerate the recovery rate of the molecular tritium (HT). Neutron irradiation can induce F+-center, O--center and O2- center in LiAlO2, and there is a certain relationship between the annihilation behavior of the irradiation defects and the tritium release process.
参考文献

[1] 彭先觉, 王真.Z箍缩驱动聚变-裂变混合能源堆总体概念研究[J].强激光与粒子束, 2014, 26:090201.(Peng Xianjue, Wang Zhen. Conceptual research on Z-pinch driven fusion-fission hybrid reactor. High Power Laser and Particle Beams, 2014, 26:090201)

[2] Xiao C, Chen X, Kang C, et al. Material properties and tritium release behavior of neutron-irradiated ceramic tritium breeders[J]. Progress in Chemistry, 2011, 23:1906-1914.

[3] Roux N, Tanaka S, Johnson C. Ceramic breeder material development[J]. Fusion Engineering and Design, 1998, 41:31-35.

[4] Okuno K, Hiroshi K. Tritium diffusivity in lithium-based ceramic breeders irradiated with neutrons[J]. Fusion Engineering and Design, 1989, 8:355-358.

[5] Nishikawa M, Kinjyo T, Nishida Y. Chemical form of tritium released from solid breeder materirals[J]. Journal of Nuclear Materials, 2004, 325:87-93.

[6] 杨本福,万竟平,曹小华,等.锂陶瓷γ-LiAlO2放氚行为研究[J].原子能科学技术, 1999, 33(5):441-445.(Yang Benfu, Wan Jingping, Cao Xiaohua, et al. Study on tritium release behavior from lithium aluminate γ-LiAlO2. Atomic Energy Science and Technology, 1999, 33(5):441-445)

[7] 陈利宾,周元林,李迎军,等.氢及其同位素在溴化丁基橡胶中渗透的分子模拟[J].强激光与粒子束, 2014, 26:052010.(Chen Libin, Zhou Yuanlin, Li Yingjun, et al. Molecular simulation of transport behavior of hydrogen and hydrogen isotopes in brominated butyl rubber. High Power Laser and Particle Beams, 2014, 26:052010)

[8] Gao X L, Chen X J, Gu M, et al. Fabrication and characterization of Li4SiO4 ceramic pebbles by wet method[J]. Journal of Nuclear Materials, 2012, 424:210-215.

[9] Nishikawa M, Kinjyo T, Ishizaka T, et al. Release behavior of bred tritium from LiAlO2[J]. Journal of Nuclear Materials, 2004, 335:70-76.

[10] Tomkov E. TDS spectra analysis[J]. Surface Science, 1996, 351:309-318.

[11] Xiao C, Kang C, Chen X, et al. Improvement of hydrogen isotope exchange reactions on Li4SiO4 ceramic pebble by catalytic metals[J]. Chinese Chemical Letters, 2012, 23:936-940.

[12] Crank J. The Mathematics of Diffusion[M]. 2nd ed. Xford:Clarendon Press, 1975:89.

[13] Okuno K, Kudo H. Thermal release of tritium produced in sintered Li2O pellets[J]. Journal of Nuclear Materials, 1983, 116:82-85.

[14] Tiliks J E, Kizane G K, Supe A A. Formation and properties of radiation-induced defects and radiolysis products in lithium orthosilicate[J]. Fusion Engineering and Design, 1991, 17:17-20.

[15] Nishikawa Y, Oyaidzu M, Yoshikawa A. Correlation between tritium release and thermal annealing of irradiation damage in neutron-irradiated Li2SiO3[J]. Journal of Nuclear Materials, 2007, 367/370:1371-1376.

[16] Oyaidzu M, Kimura H, Yoshikawa A, et al. Correlation between annihilation of irradiation defects and tritium release in neutron-irradiated lithium zirconate[J]. Fusion Engineering and Design, 2006, 81:583-588.

[17] Oyaidzu M, Morimoto Y, Kodama H, et al. Correlation between annihilation of radiation defects and tritium release in Li2TiO3[J]. Journal of Nuclear Materials, 2004, 329/333:1313-1317.

[18] Abramenkovs, Tiliks J, Kizane G. Basic study of influence of radiation on tritium release process from lithium silicates[J]. Journal of Nuclear Materials, 1997, 248:116-120.

肖成建, 陈晓军, 龚宇, 黄洪文, 冉光明, 赵林杰, 陈平, 张勤英. LiAlO2陶瓷小球的堆外放氚行为[J]. 强激光与粒子束, 2015, 27(1): 016005. Xiao Chengjian, Chen Xiaojun, Gong Yu, Huang Hongwen, Ran Guangming, Zhao Linjie, Chen Ping, Zhang Qinying. Out-of-pile tritium release of LiAlO2 pebble[J]. High Power Laser and Particle Beams, 2015, 27(1): 016005.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!