作者单位
摘要
北京工业大学材料与制造学部 北京市精密测控技术与仪器工程技术研究中心,北京100124
精密减速器回差试验台是非标设备,迄今对其精度特性缺乏系统性研究以至于还没有检定规程去评定该类测试设备的计量性能。为了评估精密减速器回差试验台的精度特性,提出了试验台精度的评定方法。首先,分析了精密减速器回差试验台的结构,确定了转矩传感器测量误差、角度传感器测量误差、转矩测量链摩擦转矩以及角度测量链弹性扭转角这四个因素是影响试验台精度的主要误差源。接着,研究了误差源的作用机理,提出了通过滞回曲线将转矩类误差转换为角度类误差的方法,统一了误差的类型。然后,提出了滞回曲线局部线性化的概念,实现了转矩类误差转换为角度类误差的简便计算。最后,根据回差的表达式给出了试验台精度的评定方法,并进行了测试实践。结果表明:几何回差的测试误差为±0.04ʹ;弹性回差的测试误差为±0.06';总回差的测试误差为±0.04',回差试验台精度满足要求,本文提出的方法对评定试验台精度是有效的。另外,对精密减速器输出端一转范围内多处测试,能提升测试精度。
精密减速器 试验台 回差 精度特性 滞回曲线 precision reducer test bench lost motion accuracy characteristic hysteresis curve 
光学 精密工程
2023, 31(16): 2372
Author Affiliations
Abstract
1 Industrial Physics Division, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka 1205, Bangladesh
2 Fiber and Polymer Division, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka 1205, Bangladesh
3 Atomic Energy Centre (AEC), Dhaka 1000, Bangladesh
Spinel ferrite Ni0.08Mn0.90Zn0.02Fe2O4 was prepared by a conventional ceramic process followed by sintering at three different temperatures (1050 C, 1100 C and 1150 C). X-ray diffraction (XRD) investigations stated the single-phase cubic spinel structure and the FTIR spectra revealed two prominent bands within the wavenumber region from 600 cm1 to 400 cm1. Surface morphology showed highly crystalline grain development with sizes ranging from 0.27 μm to 0.88 μm. The magnetic hysteresis curve at ambient temperature revealed a significant effect of sintering temperature on both coercivity (Hc) and saturation magnetization (Ms). Temperature caused a decrease in DC electrical resistivity, while the electron transport increased, suggesting the semiconducting nature of all samples and that they well followed the Arrhenius law from which their activation energies were determined. The values of Curie temperature (Tc) and activation energy were influenced by the sintering temperature. Frequency-dependent dielectric behavior (100 Hz–1 MHz) was also analyzed, which may be interpreted by the Maxwell–Wagner-type polarization. The UV–vis–NIR reflectance curve was analyzed to calculate the bandgap of ferrites, which showed a decreasing trend with increasing sintering temperature.Spinel ferrite Ni0.08Mn0.90Zn0.02Fe2O4 was prepared by a conventional ceramic process followed by sintering at three different temperatures (1050 C, 1100 C and 1150 C). X-ray diffraction (XRD) investigations stated the single-phase cubic spinel structure and the FTIR spectra revealed two prominent bands within the wavenumber region from 600 cm1 to 400 cm1. Surface morphology showed highly crystalline grain development with sizes ranging from 0.27 μm to 0.88 μm. The magnetic hysteresis curve at ambient temperature revealed a significant effect of sintering temperature on both coercivity (Hc) and saturation magnetization (Ms). Temperature caused a decrease in DC electrical resistivity, while the electron transport increased, suggesting the semiconducting nature of all samples and that they well followed the Arrhenius law from which their activation energies were determined. The values of Curie temperature (Tc) and activation energy were influenced by the sintering temperature. Frequency-dependent dielectric behavior (100 Hz–1 MHz) was also analyzed, which may be interpreted by the Maxwell–Wagner-type polarization. The UV–vis–NIR reflectance curve was analyzed to calculate the bandgap of ferrites, which showed a decreasing trend with increasing sintering temperature.
Ferrites ceramic technique FTIR dielectric constant hysteresis curve bandgap 
Journal of Advanced Dielectrics
2021, 11(6): 2150028
作者单位
摘要
天津大学 精密仪器与光电子工程学院 光电信息技术科学教育部重点实验室(天津大学),天津 300072
采用显微动态散斑相关法来测量压电陶瓷的压电位移特性并标定其线性区间。推导了透射相位衍射体在显微系统中的散斑光强互相关函数,并讨论了显微系统分辨率与放大倍率对测量微位移的影响。为在计算中避免散斑去相关的影响,采用了逐级位移相关叠加法。设计了显微散斑采集系统并测量了压电陶瓷的位移磁滞曲线。实验结果表明:使用放大倍率为100、数值孔径为1.25的显微物镜,在测量光路放大倍率为42.1时,测量位移的理论精度达到0.082;考虑衍射极限时,实际的极限位移分辨率为0.348 μm。本测量系统满足压电陶瓷位移曲线测量及线性区间标定的要求;与其他方法相比较,该方法简化了测量光路,提高了运算速度,且对装配误差要求低。
动态散斑 散斑相关 压电陶瓷 曲线拟合 磁滞曲线 dynamic speckle speckle correlation piezoelectric ceramic curve fitting hysteresis curve 
光学 精密工程
2011, 19(4): 844
王代华 1,2,*朱炜 1,2
作者单位
摘要
1 重庆大学 光电技术及系统教育部重点实验室,重庆400044
2 重庆大学 光电工程学院 精密与智能实验室,重庆400044
为了模拟WTYD型压电陶瓷微位移器的输出位移与驱动电压之间的迟滞曲线,通过采用Bouc-Wen模型模拟迟滞分量,提出了一种表征WTYD型压电陶瓷微位移器的输出位移与驱动电压之间迟滞关系的Bouc-Wen模型并建立了相应的参数辨识方法。为了验证Bouc-Wen模型及其相应的参数辨识方法的有效性,建立了相应的实验装置并对模型进行了实验验证。研究结果表明,Bouc-Wen模型的最大绝对误差为3.78 μm,最大相对误差为5.79%,表明Bouc-Wen模型及相应的参数辨识方法能较好地模拟WTYD型压电陶瓷微位移器的迟滞特性。
压电陶瓷微位移器 迟滞曲线 Bouc-Wen模型 参数辨识 piezoceramic micro-actuator hysteresis curve Bouc-Wen hysteretic operator parameter identification 
光学 精密工程
2010, 18(1): 205

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!