沈祥国 1徐银 1,2董越 1,2张博 1,2倪屹 1,2,*
作者单位
摘要
1 江南大学物联网工程学院,江苏 无锡 214122
2 江南大学先进技术研究院,江苏 无锡 214122
提出一种异质集成型薄膜铌酸锂电光调制器,由底部氮化硅波导、中间BCB黏合层、顶部铌酸锂薄膜构成调制区波导结构,调制电极位于铌酸锂薄膜的上部且二者之间填充了低折射率的SiO2,以利于实现折射率匹配并降低光损耗、微波损耗。进一步利用马赫-曾德尔干涉仪结构,设计了相应的电光调制器,并提出一种倒台阶型薄膜结构,该结构可实现输入、输出波导与调制区波导的高效耦合。对该电光调制器进行行波高速匹配设计,所得器件的半波电压长度积为1.77 V·cm,3 dB调制带宽为140 GHz,且调制区长度仅为5 mm。所提器件结构有望在大带宽薄膜铌酸锂电光调制器设计中发挥优势,助力薄膜铌酸锂光子集成器件的快速发展。
集成光学 集成光器件 调制器 铌酸锂 集成光学材料 
光学学报
2023, 43(14): 1413001
Author Affiliations
Abstract
1 Centre for Optical and Electromagnetic Research, JORCEP, State Key Laboratory for Modern Optical Instrumentation, Zhejiang Provincial Key Laboratory for Sensing Technologies, Zhejiang University, Hangzhou 310058, China
2 Key Laboratory of the Ministry of Education on Optoelectronic Information Technology, School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
Nonlinear silicon photonics has shown an ability to generate, manipulate, and detect optical signals on an ultracompact chip at a potential low cost. There are still barriers hindering its development due to essential material limitations. In this review, hybrid structures with some specific materials developed for nonlinear silicon photonics are discussed. The combination of silicon and the nonlinear materials takes advantage of both materials, which shows great potential to improve the performance and expand the applications for nonlinear silicon photonics.
Nonlinear optics, integrated optics Nonlinear optical devices Integrated optics materials 
Photonics Research
2018, 6(5): 05000B13
Author Affiliations
Abstract
1 Department of Chemistry, The University of Tokyo, Tokyo 113-0033, Japan
2 Department of Electrical Engineering and Information Systems, The University of Tokyo, Tokyo 113-0033, Japan
3 Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
4 Department of Electrical Engineering, University of California, Los Angeles, California 90095, USA
5 e-mail: goda@chem.s.u-tokyo.ac.jp
Mid-infrared (MIR) integrated photonics has attracted broad interest due to its promising applications in biochemical sensing, environmental monitoring, disease diagnosis, and optical communication. Among MIR integration platforms, germanium-based platforms hold many excellent properties, such as wide transparency windows, high refractive indices, and high nonlinear coefficients; however, the development of MIR germanium photonic devices is still in its infancy. Specifically, MIR high-Q germanium resonators with comparable performance to their silicon counterparts remain unprecedented. Here we experimentally demonstrate an MIR germanium nanocavity with a Q factor of 18,000, the highest-to-date of reported nanocavities across MIR germanium-based integration platforms. This is achieved through a combination of a feasible theoretical design, Smart-Cut methods for wafer development, and optimized device fabrication processes. Our nanocavity, with its high Q factor and ultrasmall mode volume, opens new avenues for on-chip applications in the MIR spectral range.
Infrared Integrated optics materials Photonic crystals Integrated optics devices 
Photonics Research
2018, 6(9): 09000925
Author Affiliations
Abstract
1 State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
2 Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
Aggregation of metal nanoparticles plays an important role in surface enhanced Raman scattering (SERS). Here, a strategy of dynamically aggregating/releasing gold nanoparticles is demonstrated using a gold-nanofilm coated nanofiber, with the assistance of enhanced optical force and plasmonic photothermal effect. Strong SERS signals of rhodamine 6G are achieved at the hotspots formed in the inter-particle and film-particle nanogaps. The proposed SERS substrate was demonstrated to have a sensitivity of 10 12 M, reliable reproducibility, and good stability.
Fiber optics sensors Optical tweezers or optical manipulation Integrated optics materials 
Photonics Research
2018, 6(5): 05000357
Author Affiliations
Abstract
1 State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
2 State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China
3 Laboratory of Nano Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
4 Engineering Research Center for Semiconductor Integrated Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
5 Department of Electronic & Electrical Engineering, University College London, London WC1E 7JE, UK
We report on the first electrically pumped continuous-wave (CW) InAs/GaAs quantum dot (QD) laser grown on Si with a GaInP upper cladding layer. A QD laser structure with a Ga0.51In0.49P upper cladding layer and an Al0.53Ga0.47As lower cladding layer was directly grown on Si by metal–organic chemical vapor deposition. It demonstrates the postgrowth annealing effect on the QDs was relieved enough with the GaInP upper cladding layer grown at a low temperature of 550°C. Broad-stripe edge-emitting lasers with 2-mm cavity length and 15-μm stripe width were fabricated and characterized. Under CW operation, room-temperature lasing at 1.3 μm has been achieved with a threshold density of 737 A/cm2 and a single-facet output power of 21.8 mW.
Quantum-well, -wire and -dot devices Semiconductor lasers Integrated optics materials 
Photonics Research
2018, 6(4): 04000321
Author Affiliations
Abstract
1 Institute for Energy Efficiency, University of California Santa Barbara, Santa Barbara, California 93106, USA
2 Institute of Innovative Research, Tokyo Institute of Technology, Tokyo 152-8552, Japan
3 Materials Department, University of California Santa Barbara, Santa Barbara, California 93106, USA
4 Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, California 93106, USA
Microring lasers feature ultralow thresholds and inherent wavelength-division multiplexing functionalities, offering an attractive approach to miniaturizing photonics in a compact area. Here, we present static and dynamic properties of microring quantum dot lasers grown directly on exact (001) GaP/Si. Effectively, a single-mode operation was observed at 1.3 μm with modes at spectrally distant locations. High temperature stability with T0103 K has been achieved with a low threshold of 3 mA for microrings with an outer ring radius of 15 μm and a ring waveguide width of 4 μm. Small signal modulation responses were measured for the first time for the microrings directly grown on silicon, and a 3 dB bandwidth of 6.5 GHz was achieved for a larger ring with an outer ring radius of 50 μm and a ring waveguide width of 4 μm. The directly modulated microring laser, monolithically integrated on a silicon substrate, can incur minimal real estate cost while offering full photonic functionality.
Quantum-well, -wire and -dot devices Semiconductor lasers Integrated optics materials Microcavities 
Photonics Research
2018, 6(8): 08000776
Author Affiliations
Abstract
1 Centre de Nanosciences et de Nanotechnologies, CNRS, Université Paris-Sud, Université Paris-Saclay, C2N Marcoussis, 91460 Marcoussis, France
2 Thales Research and Technology France, 1 avenue Augustin Fresnel, 91120 Palaiseau, France
3 Université Paris Diderot, Sorbone Paris Cité, 75013 Paris, France
We introduce a nanoscale photonic platform based on gallium phosphide. Owing to the favorable material properties, peak power intensity levels of 50 GW/cm2 are safely reached in a suspended membrane. Consequently, the field enhancement is exploited to a far greater extent to achieve efficient and strong light–matter interaction. As an example, parametric interactions are shown to reach a deeply nonlinear regime, revealing cascaded four-wave mixing leading to comb generation and high-order soliton dynamics.
Kerr effect Nonlinear wave mixing Pulse propagation and temporal solitons Integrated optics materials Photonic crystals Microwaves 
Photonics Research
2018, 6(5): 05000B43
Author Affiliations
Abstract
1 Centre de Nanosciences et de Nanotechnologies (C2N), CNRS, Univ. Paris-Sud, Université Paris Saclay, C2N Orsay, 91405 Orsay cedex, France
2 Laboratoire Charles Fabry, Institut d’Optique Graduate School, CNRS, Université Paris Saclay, 2 Avenue Augustin Fresnel, 91127 Palaiseau cedex, France
3 Department of Materials Science and Engineering, Massachusetts Institute of Technology-MIT, Cambridge, Massachusetts 02139, USA
4 College of Optics and Photonics-CREOL, University of Central Florida, Orlando, Florida 32816, USA
In this paper, we report the experimental characterization of highly nonlinear GeSbS chalcogenide glass waveguides. We used a single-beam characterization protocol that accounts for the magnitude and sign of the real and imaginary parts of the third-order nonlinear susceptibility of integrated Ge23Sb7S70 (GeSbS) chalcogenide glass waveguides in the near-infrared wavelength range at λ=1580 nm. We measured a waveguide nonlinear parameter of 7.0±0.7 W 1·m 1, which corresponds to a nonlinear refractive index of n2=(0.93±0.08)×10 18 m2/W, comparable to that of silicon, but with an 80 times lower two-photon absorption coefficient βTPA=(0.010±0.003) cm/GW, accompanied with linear propagation losses as low as 0.5 dB/cm. The outstanding linear and nonlinear properties of GeSbS, with a measured nonlinear figure of merit FOMTPA=6.0±1.4 at λ=1580 nm, ultimately make it one of the most promising integrated platforms for the realization of nonlinear functionalities.
Integrated optics materials Nonlinear optical materials Nonlinear optics, integrated optics 
Photonics Research
2018, 6(5): 05000B37
Author Affiliations
Abstract
1 Electronics Department, University of Sciences and Technology of Oran Mohamed Boudiaf, Oran M’Naouer BP 1505, Algeria
2 Centre of Satellites Development, Ibn Rochd USTO Oran BP 4065, Algeria
We present in this work a new mathematical model to analyze and evaluate optical phenomena occurring in the nonuniform optical waveguide used in integrated optics as an optical coupler. By introducing some modifications to the intrinsic integral, we perfectly assess the radiation field present in the adjacent medium of the waveguide and, thus, follow the evolution of the optical coupling from the taper thin film to the substrate and cladding until there is a total energy transfer. The new model that is introduced can be used to evaluate electromagnetic field distribution in three mediums that constitute any nonuniform optical couplers presenting great or low wedge angles.
130.3120 Integrated optics devices 080.1510 Propagation methods 130.3130 Integrated optics materials 230.7370 Waveguides 
Chinese Optics Letters
2017, 15(2): 021301
Author Affiliations
Abstract
1 Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Malaysia
2 Photonics Research Centre, University of Malaya, 50603 Kuala Lumpur, Malaysia
A system of an add-drop microring resonator integrated with a sampled grating distributed feedback (SG-DFB) is investigated via modeling and simulation with the time-domain traveling wave (TDTW) method. The proposed microring resonator comprises a SiO2 waveguide integrated with an InGaAsP/InP SG-DFB, and the SiO2 waveguide consists of a silicon core having a refractive index of 3.48 and Kerr coefficient of 4.5×10 18 m2/W. The SG-DFB consists of a series of grating bursts that are constructed using a periodic apodization function with a burst spacing in the grating of 45 μm, a burst length of 5 μm, and 10 bursts across the total length of the SG-DBR. Transmission results of the through and drop port of the microring resonator show the significant capacity enhancement of the generated center wavelengths. The Q-factor of the microring resonator system, defined as the center wavelength (λ0) divided by 3 dB FWHM, without and with integration with the SG-DFB is calculated as 1.93×105 and 2.87×105, respectively. Analysis of the dispersion of the system reveals that increasing the wavelength results in a decrease of the dispersion. The higher capacity and efficiency are the advantages of integrating the microring resonator and the InGaAsP/InP SG-DFB.
130.3130 Integrated optics materials 130.3990 Micro-optical devices 130.7408 Wavelength filtering devices 050.2770 Gratings 
Chinese Optics Letters
2016, 14(2): 021301

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!