作者单位
摘要
牡丹江师范学院物理与电子工程学院, 牡丹江 157011
利用第一性原理, 研究了S空位(VS)和Tc掺杂单层MoS2的电子结构和磁学性质。结果表明, Tc掺杂的单层MoS2是一种具有铁磁性的n型半导体; 与Tc掺杂体系相比, VS的引入不会导致(TcVS)掺杂系统的总磁矩发生显著变化, 且磁矩主要由Tc原子所贡献; 在2Tc掺杂体系中, 通过形成能分析确定出最稳定构型; 2Tc掺杂体系的磁矩为2.048 μB, 主要由两个Tc 原子贡献。通过自旋电荷密度分析表明, (Tc-4d)-(S-3p)-(Mo-4d)-(S-3p)-(Tc-4d)耦合链的形成可能是2Tc掺杂体系发生铁磁耦合的原因。
Tc掺杂单层MoS2 第一性原理 电荷密度 电子结构 磁学性质 Tc-doped ML-MoS2 first-principle charge density electronic structure magnetic property 
硅酸盐通报
2023, 42(11): 4178
黄田 1,2马赛 1,2刘宵宇 1,2黎迎 1,2[ ... ]普勇 1,2
作者单位
摘要
1 江苏省新能源技术工程实验室,南京 210046
2 南京邮电大学(NJUPT)理学院,南京 210046
最近,对二维铁磁材料的研究已成为自旋电子器件领域的热点。本文通过自旋极化密度泛函理论计算,设计出一种新型的二维材料Fe3As,其居里温度(Tc)为300 K,可达到室温。预测的二维Fe3As具有很强的面内Fe—Fe耦合,其大的磁各向异性能量(MAE)大约为366.7 μeV,有助于材料维持长程铁磁序。这种二维Fe3As的能带同时具有平带和狄拉克点的特征。值得注意的是,平带的位置与磁耦合的强度正相关。此外,在双轴应变的作用下,随着平带和费米面之间的距离不断减小,Tc也在逐渐升高。因此,Fe3As单层有望成为二维室温自旋电子学器件的一种有前途的候选材料。
自旋电子学 二维材料 磁学性质 笼目结构 第一性原理计算 Fe3As Fe3As spintronics two-dimensional material magnetic property Kagome structure first-principle calculation 
人工晶体学报
2023, 52(8): 1413
欧鑫林 1,2,*王进 2赵可 1,2
作者单位
摘要
1 西南交通大学物理科学与技术学院, 成都 610031
2 西南交通大学超导与新能源研究开发中心, 成都 610031
MnBi2Te4是首次被发现的一种本征磁性拓扑绝缘体, 具有重要的研究意义。本文通过在MnBi2Te4晶体中进行稀土元素掺杂, 合成了Er掺杂MnBi2Te4晶体, Er原子进入晶格并取代Mn位。在晶体制备过程中, 考虑到目前晶体制备工艺周期较长, 生成物存在Bi2Te3助熔剂等杂质的问题, 对晶体制备工艺进行了优化探索。XRD测试结果表明, 利用改进工艺制备的Er掺杂MnBi2Te4晶体结晶性能良好, 不含杂质相。磁电输运测量结果显示, 少量Er掺杂MnBi2Te4晶体的磁性增强, 掺杂样品在25.2 K发生反铁磁相变。使用原子力显微镜对Er掺杂MnBi2Te4晶体层间距进行了研究, 发现层间距为单层MnBi2Te4的整数倍。通过拉曼测试研究了Er掺杂MnBi2Te4晶体声子振动模式, 结果表明, Er掺杂是调节MnBi2Te4磁性的一种可行方法。
反铁磁拓扑绝缘体 Er掺杂 结晶性 磁性 声子振动模式 MnBi2Te4 MnBi2Te4 antiferromagnetic topological insulator Er doping crystallinity magnetic property phonon vibration mode 
人工晶体学报
2023, 52(9): 1635
作者单位
摘要
1 西安工业大学材料与化工学院, 陕西省光电功能材料与器件重点实验室, 西安 710021
2 商洛学院化学工程与现代材料学院, 陕西省矿产资源清洁高效转化与新材料工程技术研究中心, 商洛 726000
本文采用快速液相烧结法制备了Gd2O3掺杂BiFeO3陶瓷, 并对陶瓷样品进行了物相、形貌、漏电流特性和磁性能研究。XRD分析结果表明, Gd2O3的加入促进了富铋相(Bi25FeO40)的形成且使晶胞体积减小, 同时陶瓷的物相由三方相向正交相转变; SEM分析结果表明, Gd2O3掺杂能起到细化陶瓷晶粒的作用; 电学性能分析表明, 陶瓷样品漏电流较大, 但Gd2O3的掺杂可显著降低陶瓷的漏电流; 漏电流特性分析结果表明, 陶瓷在低电场下的漏电流特性是欧姆传导机制, 在高电场下纯BiFeO3陶瓷的漏电流特性为肖特基发射机制, 但随着Gd2O3掺杂量的增加而逐渐变为空间电荷限制电流传导(SCLC)机制; 磁性研究结果表明, 掺杂引入的磁性Gd2O3颗粒均匀分布在陶瓷的晶界处从而显著提高陶瓷磁性能。
BiFeO3陶瓷 Gd2O3掺杂 液相烧结法 电学性能 漏电流特性 磁性能 BiFeO3 ceramics Gd2O3 doping liquid-phase sintering method electrical property leakage current characteristic magnetic property 
人工晶体学报
2023, 52(6): 1161
王岐 1,2朱晓明 2,3王军涛 2,3李泽宇 2,3[ ... ]胡鹏 2,3
作者单位
摘要
1 湖北科技学院药学院, 咸宁 437100
2 湖北科技学院, 辐射化学与功能材料湖北省重点实验室, 咸宁 437100
3 湖北科技学院非动力核技术研发中心, 咸宁 437100
本文以2, 6-二甲氧基苯酚和硝酸铽为原料, 成功合成了一例新型九核铽簇合物{Tb9(L)4(μ4-OH)2(μ3-OH)8(μ2-OCH3)4(NO3)8(H2O)8}(OH)·2H2O(1), 其中HL为2, 6-二甲氧基苯酚。通过X射线衍射、元素分析、红外光谱、热重和磁性测试对该簇合物进行表征。X射线单晶衍射分析结果表明, 簇合物属于正交晶系, 空间群为I222, 晶胞参数为a=1.532 8(3) nm, b=1.796 9(4) nm, c=1.863 5(4) nm, α=β=γ=90°, V=5.132 6(19) nm3。簇合物中九个金属中心由μ4-OH和μ3-OH相互连接, 形成的骨架呈现出有趣的沙漏状拓扑结构, 其中, 中心Tb离子呈现出稍微扭曲的四方棱锥几何构型, 其他Tb离子均为稍变形的十二面体构型。磁性测试结果表明, 簇合物1中的金属离子之间存在弱的反铁磁相互作用, 由于快速的磁量子隧穿效应, 其未表现出慢磁弛豫行为。
九核簇合物 铽离子 晶体结构 沙漏状拓扑 磁性 nonanuclear cluster terbium ion crystal structure hourglass like topology magnetic property 
人工晶体学报
2023, 52(4): 598
作者单位
摘要
1 河海大学理学院,南京211100
2 南京大学固体微结构物理国家重点实验室,南京210093
本文利用高温固相反应法合成了六角Y1-xHoxMn0.8Fe0.2O3多晶样品,研究Ho3+掺杂对YMn0.8Fe0.2O3微结构以及磁性质的影响。X射线衍射和拉曼测量结果显示所有样品均为单相六角结构,当Ho3+掺杂浓度低于0.15时,晶格常数a、c,晶胞体积及Mn—O键长均随着掺杂浓度的增加而减小。A位稀土原子位移差以及拉曼声子模式的变化表明随着Ho3+掺杂比例增加,A位稀土原子相对于平面的偏移减小,MnO5双锥体倾斜角减小,B位Mn3+的三聚作用被削弱,Mn3+—O2-—Mn3+间超交换作用减弱,反铁磁(AFM)序被抑制,反铁磁转变温度下降。磁性测量显示低温下Y0.9Ho0.1Mn0.8Fe0.2O3的磁化强度显著增强,弱铁磁(WFM)序增加,归因于Ho3+加入后系统磁阻挫行为的降低及Ho3+—O2-—Mn3+间自旋交换作用产生的铁磁序。这为进一步探索室温多铁性材料提供了思路。
六角YMnO3 结构畸变 MnO5双锥体 三聚作用 超交换作用 磁性 hexagonal YMnO3 structural distortion MnO5 bipyramid trimerization superexchange interaction magnetic property 
人工晶体学报
2022, 51(12): 2096
作者单位
摘要
1 贵州民族大学物理与机电工程学院, 贵阳 550025
2 贵州民族大学材料科学与工程学院, 贵阳 550025
3 贵州民族大学工程实训中心, 贵阳 550025
采用基于密度泛函理论第一性原理的赝势平面波方法, 计算了块体Fe2Ge及其(001)表面的电子结构和磁性。考虑了两种类型的终端(001)表面: Ge(Ⅰ)-(001)表面和Ge(Ⅱ)-(001)表面。电子结构方面, 不同类型的Fe2Ge(001)表面都表现出金属特性, 这与块体的金属性保持一致。通过计算它们的自旋极化率, 得出Ge(Ⅰ)-(001)表面的自旋极化程度最高。磁性方面, 在块体和Ge(Ⅱ)-(001)表面的Ge原子是铁磁自旋有序的, 而在Ge(Ⅰ)-(001)表面第一层的Ge原子是亚铁磁自旋有序的。此外, Ge(Ⅱ)-(001)表面Ge原子的自旋磁矩优于块体中和Ge(Ⅰ)-(001)表面Ge原子的自旋磁矩。这些结果与Fe的d态和Ge的p态电子的杂化有关, 本文中通过分析它们的态密度进行了讨论。
Fe2Ge(001)表面 电子结构 磁性 第一性原理 密度泛函理论 自旋极化率 Fe2Ge (001) surface electronic structure magnetic property first-principle density functional theory spin polarizability 
人工晶体学报
2022, 51(11): 1895
作者单位
摘要
南京邮电大学理学院, 南京 210023
自石墨烯被发现以来, 各种具有新奇特性的二维材料受到了越来越多的关注。Janus型二维材料具有不对称的表面特性, 这种特殊的结构往往具有独特的电学、磁学与光学性质, 使其成为近年来材料科学领域研究的热点。本文搭建了Janus型结构CrXX’(X/X’=S, Se, Te)(CrSSe, CrSTe, CrSeTe), 研究了体系的电学、磁学、光学性质, 并探究了双轴应变对其电学、磁学、光学性质的影响。结果表明, CrSSe、CrSTe与CrSeTe均呈现金属性, 都是电子的优良导体, 三种体系的电子结构对外加应变具有很好的鲁棒性。CrXX’(X/X’=S, Se, Te)具有本征铁磁性, 并且通过施加双轴应变可对其磁矩进行调控。此外, 三种体系均具有较高的居里温度, 特别是CrSTe的居里温度可达310 K。CrXX’(X/X’=S, Se, Te)还具有优异的可见光与紫外光吸收性能, 应变可对其光吸收系数进行调控, 并且压应变与拉应变可分别使其吸收谱线向短波与长波方向移动。本文的工作为进一步研究二维Janus单层CrXX’(X/X’=S, Se, Te)在新型室温自旋电子器件领域的应用提供了理论支持。
Janus型二维材料 第一性原理 密度泛函理论 磁电材料 电子结构 磁学性质 光吸收系数 Janus two-dimensional material first-principle density functional theory magnetoelectric material electronic structure magnetic property light absorption coefficient 
人工晶体学报
2022, 51(11): 1884
作者单位
摘要
宿迁学院信息工程学院,材料工程系,宿迁 223800
基于萘二膦酸,采用水热法合成两例新型钴配合物[Co4(1,4-ndpa)2(4,4′-bpy)2]·5H2O (1)和[Co(1,4-ndpaH)]·1.5H2O (2),其中1,4-ndpa4-为1,4-萘二膦酸去质子化,4,4′-bpy为4,4′-联吡啶。在配合物1和2中,钴原子呈四配位的畸变四面体构型。配合物1的晶体结构中包含有共用顶点的四面体{CoNO3}和{PO3C}的梯形链,这些梯形链分别由1,4-ndpa4-和4,4′-bpy配体与相邻的梯形链连接,形成开放的三维框架结构,结晶水分子通过氢键作用填充在骨架的空隙中。配合物2的晶体结构中包含有不同于配合物1的链结构,共用顶点四面体{CoO4}和{PO3C}组成的无机链仅通过1,4-ndpaH3-配体交联形成三维开放框架结构。磁性研究表明,配合物1中CoII存在自旋轨道耦合和/或CoII之间存在反铁磁相互作用。
金属-有机框架 水热法 钴膦酸盐 晶体结构 磁性质 metal-organic framework hydrothermal method cobalt phosphonate crystal structure magnetic property 
人工晶体学报
2022, 51(7): 1233
作者单位
摘要
国防科技大学新型陶瓷纤维及其复合材料重点实验室, 长沙 410073
有机聚合物衍生陶瓷技术具有聚合物分子可设计性强、成型容易和制备温度低等优点, 已经成为陶瓷及其复合材料的主要制备技术之一。裂解是陶瓷先驱体实现从有机到无机转化的关键步骤, 对目标陶瓷的组成、结构和性能有着决定性的影响。在陶瓷先驱体中添加过渡金属进行催化裂解, 可以改变其裂解行为, 进而调控和拓展裂解产物的结构和性能。本文从不同过渡金属对陶瓷先驱体的催化裂解作用入手, 总结了陶瓷先驱体催化裂解的研究现状, 探讨了催化机理, 并就后续深化研究与应用提出了发展建议。
裂解 催化 过渡金属 陶瓷先驱体 有机聚合物衍生陶瓷 聚硅氮烷 硅氧烷 磁学性能 pyrolysis catalysis transition metal preceramic polymer polymer-derived ceramics polysilazane siloxane magnetic property 
硅酸盐通报
2022, 41(4): 1395

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!