作者单位
摘要
上海理工大学 光电信息与计算机工程学院,上海 200093
光电探测器在通信、检测和医疗等领域应用广泛,随着航空航天、夜视、遥感、热成像、汽车互联和消费电子等行业的发展,人们对超宽带探测器的需求也越来越迫切。现有的超宽带探测是使用不同材料、不同探测频段的多个光电探测器,集成度不高,阻碍了上述应用的发展。因此设计了石墨烯微米条–金属光栅复合结构的光电探测器,该器件在太赫兹、红外和可见光波段都可产生光电响应。在可见光范围内,金属光栅将探测器的探测灵敏度从1.1 mA/W显著提高至2.5 mA/W。该研究为基于石墨烯的超宽带光电探测器的设计提供了新的思路。
石墨烯微米条 金属光栅微米条 光致栅控效应 测辐射热效应 graphene micron strip metal grating micron strip photogating effect bolometer effect 
光学仪器
2024, 46(1): 42
孙国斌 1张锦 1,*季雪淞 1胡驰 1[ ... ]刘严严 2,**
作者单位
摘要
1 西安工业大学 光电工程学院,西安 710021
2 电磁空间安全全国重点实验室,天津 300308
设计出一种工作在可见光波段宽入射角度范围具有高消光比的金属偏振分束光栅。采用等效介质理论对金属偏振分束光栅原理进行定性分析,利用严格耦合波理论和时域有限差分法对金属Al光栅进行数值仿真并详细分析了结构参数中周期、高度以及光波长和入射角度等参数对偏振特性的影响。结果表明:当Al光栅占空比为0.5,周期为0.15 μm,光栅脊高度为0.15 μm时,在0.4~0.7 μm波段和45°±10°入射角范围内,该金属偏振光栅对TM波高透射,对TE波高反射,光栅透射消光比平均35 dB,反射消光比平均12 dB,最后对制作的金属偏振光栅进行消光比测量,验证了设计结果的正确性。该研究结果对设计和制备高衍射效率、高消光比、宽波段宽入射角度范围的偏振分束器具有较好的实践指导价值。
亚波长金属光栅 偏振分束 等效介质理论 严格耦合波理论 时域有限差分法 Subwavelength metal grating Polarization beam splitting Equivalent medium theory Rigorous coupled wave analysis theory Finite difference time domain method 
光子学报
2023, 52(12): 1205002
作者单位
摘要
南京邮电大学电子与光学工程学院、柔性电子(未来技术)学院,江苏 南京 210023
在金属光栅覆盖分布式布拉格反射镜(DBR)双层结构中,利用金属与DBR交界面上的塔姆等离激元(TPPs)能够激发金属光栅狭缝内的表面等离激元(SPPs)的法布里-珀罗(F-P)谐振,由此产生的能量局域有助于感知狭缝内填充介质的折射率参数。为了进一步提升TPPs的激发效率,实现高灵敏度折射率传感,本文提出在金属光栅底部引入金属膜层构建金属光栅-金属膜-DBR的三层复合结构,采用有限元法分析了膜层厚度对复合结构透射谱线的定量影响。仿真结果显示,随着金属膜层厚度的增加,透射峰的谱宽单调减小,而峰值透射率呈现先增大后减小的变化趋势,在膜厚为12 nm时最大,相比无膜层结构,光谱峰值透射率提升约29%。在此基础上通过改变光栅占空比及金属光栅高度,分析了光栅狭缝中三到五阶类F-P谐振模对应的透射峰的传感性能指标。结果表明,随着占空比的减小,各阶谐振模透射峰的灵敏度显著增大。当选择占空比为60%时,四阶和五阶谐振透射峰的传感灵敏度分别升至171.20 nm/RIU(灵敏度单位)和178.35 nm/RIU。此外,改变金属光栅的高度可以实现折射率探测区间近乎线性移动,当光栅高度从900 nm增大到1200 nm时,基于三到五阶谐振模式的探测区间可以有效覆盖从1.00到2.27的折射率区间。本文的研究结果为利用TPPs进行折射率传感提供了一种有效的设计思路。
遥感与传感器 表面等离激元 塔姆等离激元 金属光栅 类法布里-珀罗谐振 折射率传感器 
光学学报
2023, 43(14): 1428002
作者单位
摘要
北京大学 物理学院, 人工微结构与介观物理国家重点实验室,北京 100871
本文研究了一维金属纳米狭缝阵列中磁表面等离激元的相干现象,并提出了一种双谷传感方法以提高灵敏度。与通常所采用的固定入射角度进行波长扫描的方式不同,本文采用固定波长改变入射角度的方式研究表面等离激元的相干现象。由于延迟效应的存在,随着周围介质折射率的变化,两个谷会向相反的方向移动。相比于使用单一谷进行标定的方式,两个相反方向移动的谷可以有效提高灵敏度。用于标定的两个谷单独的灵敏度最大分别为39.2°/RIU和102.4°/RIU,而双谷标定的总灵敏度可达141.6°/RIU。此外,狭缝介质与上层介质的折射率不一致对传感性能的影响很小,故其有广泛的应用前景。
表面等离激元 折射率传感器 相干 金属光栅 surface plasmons refractive index sensor coherence metal grating 
中国光学
2023, 16(2): 458
作者单位
摘要
1 衢州职业技术学院 信息工程学院, 衢州 324000
2 北京工业大学 光电子技术教育部重点实验室, 北京100124
3 衢州职业技术学院 设备与实训管理中心, 衢州 324000
为了提高发光二极管(LED)的发光效率, 在LED出光面放置金属光栅, 采用时域有限差分法进行了理论分析和模拟计算。结果表明, 对光栅优化后, 金属光栅对波长460nm的透射率接近1, 可提高LED的光提取效率;在此波长下, 可同时激发局域表面等离激元和表面等离极化激元, 有助于提高LED内量子效率; 且具有金属光栅结构的LED的发光效率是仅在出光面放置一层Ag薄层的LED的30倍。该研究为未来制备高发光效率的LED提供了理论指导。
光学器件 发光二极管 金属光栅 发光效率 内量子效率 光提取效率 optical devices light emitting diode metal grating luminous efficiency internal quantum efficiency light extraction efficiency 
激光技术
2022, 46(3): 368
作者单位
摘要
武汉理工大学理学院, 湖北 武汉 430070
首先在光纤端面设计一种由金光栅-介质-金薄膜构成的复合结构,并研究多种共振模式随介质层厚度的变化及其场分布特点。然后研究限制在金光栅和金薄膜纳米级间距的波导共振模,通过反射谱的变化和谐振模式的电场分布特点研究不同阶次的纳米谐振效应。此外,还仿真计算金光栅的宽度、厚度及周期、中间介质层折射率和金反射薄膜厚度的变化对纳米谐振腔光谱特性的影响,根据波导模干涉的相位差公式定性分析其谐振频率的变化,并计算获得纳米谐振腔对腔内介质折射率和腔长的灵敏度。最后,搭建微位移平台,验证光纤端面与金薄膜所构成的Fabry-Perot干涉光谱随间距的变化,并提出光纤端面纳米谐振结构的实现方案。
光纤光学 纳米谐振腔 金属光栅 TM0表面等离子体波 光纤传感 
光学学报
2022, 42(2): 0206005
作者单位
摘要
太原理工大学 物理与光电工程学院, 山西 太原 030024
光电探测器可以实现光信号到电信号的转换,在工业、**、医疗等领域已展现出巨大的应用价值。但是,传统的平直型光电探测器捕获线光的能力较弱,一定程度上限制了响应率等性能指标的进一步提高。而基于贵金属纳米结构的表面等离激元共振可以急剧增强近场区域的(纳米尺度)电场强度和对线光的捕获能力,大幅度地提高光电探测器性能。本文首先介绍了表面等离激元的基本原理。随后,详细介绍了金属纳米颗粒、金属光栅等不同结构的表面等离激元增强型光电探测器研究进展。最后,总结全文并针对表面等离激元增强型光电探测器的发展前景做出了展望。
传播型表面等离激元 局域表面等离激元 光电探测器 金属纳米颗粒 金属光栅 propagating surface plasmon polaritons localized surface plasmon polaritons photodetector metal nanoparticles metal grating 
发光学报
2021, 42(7): 1014
Author Affiliations
Abstract
1 Department of Electronics, Quaid-i-Azam University, Islamabad 45320, Pakistan
2 Department of Physics, Lahore University of Management Sciences, Lahore 54792, Pakistan
3 Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
4 Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
The excitation of a surface-plasmon-polariton (SPP) wave guided by a columnar thin film (CTF) deposited on a one-dimensional metallic surface-relief grating was investigated for sensing the refractive index of a fluid infiltrating that CTF. The Bruggemann homogenization formalism was used to determine the relative permittivity scalars of the CTF infiltrated by the fluid. The change in the refractive index of the fluid was sensed by determining the change in the incidence angle for which an SPP wave was excited on illumination by a p-polarized plane wave, when the plane of incidence was taken to coincide with the grating plane but not with the morphologically significant plane of the CTF. Multiple excitations of the same SPP wave were found to be possible, depending on the refractive index of the fluid, which can help increase the reliability of results by sensing the same fluid with more than one excitation of the SPP wave.
metal grating multiple excitation rigorous coupled-wave approach sensitivity surface-plasmon-polariton wave 
Chinese Optics Letters
2021, 19(8): 083601
作者单位
摘要
安徽大学计算智能与信号处理教育部重点实验室, 安徽 合肥 230601
金(Au)亚波长光栅被溅射到经典硅基液晶(LCoS)的ITO电极上,它与薄液晶盒和底层铝电极组成复合共振波导结构,简称GLCoS。与基于液晶传播效应的LCoS截然不同,在GLCoS中,上电极的表面等离激元与光栅槽中的TM-FP (TM-Fabry Pérot)共振耦合,诱导一个0阶反射的相位调制;铝(Al)电极既是反射背板又与Au光栅、薄液晶盒组成波导,使共振耦合得到增强。在操控光波阵面的同时,GLCoS也作为电控器件,施加电压改变液晶的折射率,进而控制开腔FP的边缘介质条件,达到有源0~2π相位调制。实验结果表明,本文结构可用于1 μm量级像素的相位空间光调制器,在高空间带宽积的全息视频显示中具有广阔的应用前景。
光栅 全息视频显示 亚波长金属光栅 法布里-珀罗共振 硅基液晶 
光学学报
2020, 40(3): 0305001
作者单位
摘要
1 中国科学院长春光学精密机械与物理研究所国家光栅制造与应用工程技术研究中心, 吉林 长春 130033
2 中国科学院大学, 北京 100049
提出了分步寻优的基于粒子位置调整惯性权重的粒子群算法(PDW-PSO),通过调用严格耦合波方法(RCWA)计算衍射效率,进行了光栅结构参数的优化。将PDW-PSO与惯性权重不变的粒子群算法(PSO)和基于迭代次数调整惯性权重的粒子群算法(IDW-PSO)进行对比,结果表明PDW-PSO具有更快的收敛速度,相比于PSO和IDW-PSO,PDW-PSO的平均迭代次数分别从89.83和74减少至21.2,调用RCWA的次数分别从3144.05和2590下降至224。分析了波段匹配数对算法的影响, PSO和IDW-PSO的RCWA调用次数与波段匹配数呈等倍率增加,而PDW-PSO的RCWA调用次数的增加倍率小于波段匹配数的增加倍率。进行了算法准确度实验,在30次运行中,PDW-PSO与PSO、IDW-PSO正确收敛到最优值的次数相近,误差值不超过6.6%;随着粒子数的增加,三种方法的准确度都有所提高,粒子数达到27后基本都可以保证收敛到最优。
光栅 亚波长角向偏振金属光栅 粒子群优化算法 基于粒子位置调整惯性权重 收敛速度 
光学学报
2019, 39(7): 0705002

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!