作者单位
摘要
南昌大学电子信息工程系,江西 南昌 330031
研究了三腔复合光力系统中探测场的透射系数和四波混频现象。结果表明:改变两个光学腔之间的耦合强度,可以使光力诱导透明现象发生显著变化。此外,在共振情况下,通过控制两个光学腔之间的耦合强度并改变机械振子的频率,可以对四波混频谱进行调制。通过双场探测手段,利用四波混频谱中的尖峰位置,实现了机械振子振动频率的精确测量。
量子光学 复合光力系统 透射谱 四波混频 光力诱导透明 
中国激光
2023, 50(14): 1412001
黄先明 1,2,3王飞 4,*陆宝乐 1,2,3,**白晋涛 1,2,3
作者单位
摘要
1 西部能源光子技术省部共建国家重点实验室,陕西 西安 710127
2 陕西省全固态激光及应用工程技术研究中心,陕西 西安 710127
3 西北大学光子学与光子技术研究所陕西省光电子技术重点实验室,陕西 西安 710127
4 湖北工业大学理学院,湖北 武汉 430068
拉盖尔-高斯旋转腔系统是获得光力学诱导透明(OMIT)效应的一种特殊装置,进一步提出在该腔中利用非线性耦合和轨道角动量(OAM)交换实现三阶克尔非线性效应的调控。利用系统的哈密顿模型可以得到克尔非线性解析表达式,经过数值模拟研究发现,当系统被调节到OMIT窗口附近时,携带OAM的光场会经历极小的吸收和强烈的色散,从而导致巨克尔非线性效应的产生。与传统的电磁诱导透明(EIT)和OMIT相比,该系统可以通过OAM和其他参数实现巨克尔非线性的调控。不仅如此,轨道角量子数还可以被用于控制光传播的群速度、实现快光和慢光效应。
非线性光学 克尔系数 轨道角动量 快慢光效应 光力学诱导透明 
光学学报
2022, 42(22): 2219002
Author Affiliations
Abstract
1 The Chinese University of Hong Kong, Department of Electronic Engineering, Shatin, Hong Kong SAR, China
2 University of Science and Technology of China, CAS Key Laboratory of Quantum Information, Hefei, China
3 University of Science and Technology of China, CAS Center for Excellence in Quantum Information and Quantum Physics, Hefei, China
Modern information networks are built on hybrid systems working at disparate optical wavelengths. Coherent interconnects for converting photons between different wavelengths are highly desired. Although coherent interconnects have conventionally been realized with nonlinear optical effects, those systems require demanding experimental conditions, such as phase matching and/or cavity enhancement, which not only bring difficulties in experimental implementation but also set a narrow tuning bandwidth (typically in the MHz to GHz range as determined by the cavity linewidth). Here, we propose and experimentally demonstrate coherent information transfer between two orthogonally propagating light beams of disparate wavelengths in a fiber-based optomechanical system, which does not require phase matching or cavity enhancement of the pump beam. The coherent process is demonstrated by interference phenomena similar to optomechanically induced transparency and absorption. Our scheme not only significantly simplifies the experimental implementation of coherent wavelength conversion but also extends the tuning bandwidth to that of an optical fiber (tens of THz), which will enable a broad range of coherent-optics-based applications, such as optical sensing, spectroscopy, and communication.
cavity optomechanics coherent wavelength conversion optomechanically induced transparency 
Advanced Photonics
2022, 4(5): 056003
作者单位
摘要
1 通化师范学院物理学院,吉林 通化 134000
2 广西师范大学物理科学与技术学院,广西 桂林 541004
在包含二能级原子系综在内的腔光力学系统中,利用忽略的非旋转波近似效应在不可解边带区域和可解边带区域中,讨论光力诱导透明性质、色散性质和光力诱导放大性质。当驱动光力学腔的驱动光场为红失谐时,可以在可解边带区域和不可解边带区域中分别实现完美光力诱导透明和光力诱导放大的现象。实验结果表明,无论是在可解边带区域还是不可解边带区域中,随着光力学腔的耗散速率的增加,光力诱导透明窗口的半峰全宽会变得很窄,只不过在不可解边带区域中光力诱导透明窗口的半峰全宽远远小于可解边带区域。光力诱导放大的最大值变化情况正好与光力诱导透明窗口的半峰全宽变化情况相反,可解边带区域中光力诱导放大的最大值小于不可解边带区域。
测量 腔光力学系统 可解边带区域 不可解边带区域 光力诱导透明 光力诱导放大 半峰全宽 
激光与光电子学进展
2021, 58(5): 0512002
作者单位
摘要
安徽理工大学力学与光电物理学院, 安徽 淮南 232001
研究了含有两条特殊路径的环形光力系统的光学传输特性, 这两条路径结构相互独立但彼此间存在声子、光子耦合。通过调节两条独立耦合路径间的耦合强度以 及有效光机械耦合率等参数,系统展现出了诱导透明现象的可调谐性。在耦合强度较大时会产生对称失 谐点透明峰,距离和强度均可由路径耦合强度调控,从而使基于该系统的全光子开关在理论上成为可能。 此外,通过对相关参数的调节,能够轻易地改变透射光的群延迟大小,通过多种途径实现快、慢光的可调 谐性。在部分条件下,系统展现出对快慢光调制的优良特性,为相关光子器件的制作与量子现象的研究提 供了一个好的平台。
量子光学 腔光力系统 光力诱导透明 慢光 快光 quantum optics cavity optomechanical system optomechanically induced transparency slow light fast light 
量子电子学报
2020, 37(2): 165
作者单位
摘要
1 池州学院 机电工程学院 量子信息与光电信息交叉研究中心, 安徽 池州 247000
2 北京大学 物理学院, 北京 100871
提出一个杂化腔光力系统理论方案,利用两纳米机械振子间的库仑耦合作用实现弱探测光的双光力诱导透明窗口.研究边带可分辨区域和红失谐情况下双光力诱导透明窗口的可调特性. 数值计算表明:两纳米振子间的库仑作用可有效地使单光力诱导透明窗口劈裂为双透明窗口.随着库仑耦合强度的增大,两透明窗口间的距离对称性地拉大;其次,光力腔衰减率的改变对两透明窗口的位置和深度无影响,仅对两透明窗口的宽度产生细微改变,测量精度可在坏腔情形下得到很好的保持;另外,仅增加参量放大器的非线性增益参量将使两透明窗口变宽,而引入驱动参量放大器的光场相位,利用相位匹配可以产生比空腔情形更加狭窄陡峭的双透明窗口,可用于比空腔情况更加精密的测量.
腔光力学 光力诱导透明 库仑耦合 光学参量放大器 相位匹配 Cavity optomechanics Optomechanically induced transparency Coulomb coupling Optical parametric amplifier Phase matching 
光子学报
2017, 46(9): 0927001

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!