Kun Shuai 1,2,3Yuanan Zhao 1,2,3,*Xiaofeng Liu 1,2,3,*Xiangkun Lin 1,2,3[ ... ]Jianda Shao 1,3,9
Author Affiliations
Abstract
1 Laboratory of Thin Film Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences (CAS), Shanghai, China
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
3 Key Laboratory of Materials for High Power Laser, Chinese Academy of Sciences, Shanghai, China
4 School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, China
5 National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, China
6 School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, China
7 National Laboratory on High Power Laser and Physics, Shanghai Institute of Optics and Fine Mechanics, CAS, Shanghai, China
8 Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, China
9 Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
Multilayer dielectric gratings (MLDGs) are crucial for pulse compression in picosecond–petawatt laser systems. Bulged nodular defects, embedded in coating stacks during multilayer deposition, influence the lithographic process and performance of the final MLDG products. In this study, the integration of nanosecond laser conditioning (NLC) into different manufacturing stages of MLDGs was proposed for the first time on multilayer dielectric films (MLDFs) and final grating products to improve laser-induced damage performance. The results suggest that the remaining nodular ejection pits introduced by the two protocols exhibit a high nanosecond laser damage resistance, which remains stable when the irradiated laser fluence is more than twice the nanosecond-laser-induced damage threshold (nanosecond-LIDT) of the unconditioned MLDGs. Furthermore, the picosecond-LIDT of the nodular ejection pit conditioned on the MLDFs was approximately 40% higher than that of the nodular defects, and the loss of the grating structure surrounding the nodular defects was avoided. Therefore, NLC is an effective strategy for improving the laser damage resistance of MLDGs.
laser-induced damage threshold multilayer dielectric gratings nanosecond laser conditioning nodular defects picosecond–petawatt laser systems 
High Power Laser Science and Engineering
2023, 11(6): 06000e89
侯可 1,2欧阳小平 1,3,*潘良泽 1,3丁福财 1,2[ ... ]朱健强 1,3
作者单位
摘要
1 中国科学院上海光学精密机械研究所高功率激光物理重点实验室,上海 201800
2 中国科学院大学,北京 100049
3 上海交通大学IFSA协同创新中心,上海 200240
4 中国工程物理研究院上海激光等离子体研究所,上海 201800
拍瓦激光系统中剩余的高阶色散导致了脉冲波形的振荡,影响了拍瓦激光的信噪比。为了进一步优化拍瓦激光的信噪比特性,满足激光加速电子、质子等粒子的效率提升需求,本文提出了一种基于双折射晶体的新型超短脉冲的三阶色散主动调控方法,用于信噪比的主动调控。通过数值分析模拟了双折射晶体引入的二阶色散、三阶色散,针对中心波长为1053 nm的拍瓦激光系统,选择适当的晶体厚度,可以通过调节双折射晶体的面内旋转角改变系统剩余三阶色散。同时,基于神光Ⅱ第九路拍瓦激光系统光参量啁啾脉冲放大(OPCPA)预压缩的信噪比测量值,对比了不同量级剩余三阶色散对脉冲信噪比的影响,得出通过改变拍瓦激光系统中剩余三阶色散量,可实现不同量级信噪比的主动调控的结论。该研究结果对于高能激光系统剩余三阶色散的补偿以及信噪比的优化具有重要意义。
激光器与激光光学 双折射晶体 三阶色散 信噪比 拍瓦激光 
光学学报
2023, 43(10): 1014003
崔璨 1,2刘旭 3李森森 1,3王月 4[ ... ]吕志伟 1,2
作者单位
摘要
1 河北工业大学 先进激光技术研究中心,天津
2 河北省先进激光技术与装备重点实验室,天津
3 中国电子科技集团公司光电研究院,天津
4 哈尔滨工业大学 航天学院可调谐(气体)激光技术国家重点实验室,哈尔滨
拍瓦激光装置在粒子加速、二次粒子源产生、惯性约束聚变和放射治疗等特定研究领域体现出重大应用价值。截止2020年,全球范围超过100台超快超强拍瓦激光装置已经建成和正在建设中。为了更好地推进超快激光科学及应用的发展,充分向科研人员开放这些大型激光装置的使用权限并提供技术支持,拍瓦激光装置按照地域被划分在不同的运营组织进行管理,主要分布在北美、欧洲和亚洲等地区。将以世界上强激光科教组织机构为线索,对紧凑型拍瓦级高强度短脉冲激光装置的技术路线、激光参数和相关技术的最新情况展开综述。
拍瓦激光器 高强度短脉冲 高平均功率泵浦 petawatt laser high intensity ultrashort laser high average power pump 
光电技术应用
2022, 37(4): 1
孙青丰 1,2李大为 1,2王韬 3张腾 1,2[ ... ]徐光 1
作者单位
摘要
1 中国科学院上海光学精密机械研究所高功率激光物理联合实验室, 上海 201800
2 中国科学院大学材料与光电研究中心, 北京 100049
3 中国工程物理研究院上海激光等离子体研究所, 上海 201800
为实现弱信号对比度的高动态范围测量,基于二阶自相关理论,提出了一种实现纳焦级弱信号对比度高动态范围测量的方法。理论分析了能量(功率)、相位匹配和测量噪声对测量动态范围的影响,发现通过对测量噪声能量的光子计数进行探测、精确设置相位匹配过程中的非共线角,并采用聚焦和滤波方式对测量噪声进行抑制,可有效提升测量的动态范围。在此基础上,建立了一台弱信号高动态范围测量系统,利用神光II高能拍瓦激光种子源,实现了纳焦级弱信号1.0×10 11的高测量动态范围,这一数值与理论分析结果相符;同时,实现了种子源4.3×10 8对比度的准确甄别。研究结果对国内高能拍瓦激光系统对比度的提升具有重要意义。
非线性光学 高动态范围测量 二阶自相关 弱信号 高能拍瓦激光系统 
中国激光
2020, 47(6): 0604001
作者单位
摘要
中国工程物理研究院激光聚变研究中心等离子体物理重点实验室, 四川 绵阳 621900
基于皮秒拍瓦激光产生的高能X射线源具有强度高、脉宽短、焦点小的特点,利用这种X射线源发展出来的高时空分辨率X射线点投影背光照相是强加载条件下材料动态响应,以及惯性约束聚变等高能量密度物理研究中亟需的重要诊断技术。目前,研究人员主要依靠TITAN、OMEGA-EP和神光Ⅱ升级等大型皮秒拍瓦激光装置,对皮秒拍瓦激光与固体靶相互作用产生的X射线的能谱、转换效率、分辨率等关键参数进行了研究,发展了点投影背光照相技术,并开展了动态演示实验,成功获得了惯性约束聚变内爆过程和冲击加载材料微喷过程的演示图像。
激光光学 皮秒拍瓦激光 高时空分辨率 X射线 背光照相 
中国激光
2020, 47(5): 0500010
I. C. E. Turcu 1,2,7,†B. Shen 3,4,5D. Neely 1G. Sarri 6[ ... ]Y. Yin 10
Author Affiliations
Abstract
1 STFC Rutherford Appleton Laboratory, Central Laser Facility, OxfordshireOX11 0QX, UK
2 School of Electronic Science and Engineering, Nanjing University, Nanjing210023, China
3 State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
4 School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
5 Shanghai Normal University, Shanghai 200234, China
6 School of Mathematics and Physics, Queen’s University Belfast, Belfast BT7 1NN, UK
7 ELI-NP Extreme Light Infrastructure – Nuclear Physics, National Institute of Physics and Nuclear Engineering (IFIN HH), Bucharest-Magurele077125, Romania
8 SUPA Department of Physics, University of Strathclyde, Glasgow G4 0NG, UK
9 The John Adams Institute for Accelerator Science, Imperial College London, London SW7 2AZ, UK
10 Department of Physics, National University of Defense Technology, Changsha 410073, China
11 School of Nuclear Science and Technology, University of South China, Hengyang 421001, China
12 Key Laboratory for Laser Plasmas (MOE), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
A new generation of high power laser facilities will provide laser pulses with extremely high powers of 10 petawatt (PW) and even 100 PW, capable of reaching intensities of $10^{23}~\text{W}/\text{cm}^{2}$ in the laser focus. These ultra-high intensities are nevertheless lower than the Schwinger intensity $I_{S}=2.3\times 10^{29}~\text{W}/\text{cm}^{2}$ at which the theory of quantum electrodynamics (QED) predicts that a large part of the energy of the laser photons will be transformed to hard Gamma-ray photons and even to matter, via electron–positron pair production. To enable the investigation of this physics at the intensities achievable with the next generation of high power laser facilities, an approach involving the interaction of two colliding PW laser pulses is being adopted. Theoretical simulations predict strong QED effects with colliding laser pulses of ${\geqslant}10~\text{PW}$ focused to intensities ${\geqslant}10^{22}~\text{W}/\text{cm}^{2}$.
colliding petawatt laser pulses electron–positron pairs creation nonlinear Breit–Wheeler process petawatt laser facilities quantum electrodynamics 
High Power Laser Science and Engineering
2019, 7(1): 01000e10
Author Affiliations
Abstract
1 National Laboratory on High Power Laser and Physics , Shanghai Institute of Optics and Fine Mechanics , Chinese Academy of Sciences , Shanghai 201800 , China
2 University of Chinese Academy of Sciences , Beijing 100049 , China
We present the design and experiment of a broadband optical parametric chirped-pulse amplifier (OPCPA) which provides high conversion efficiency and good beam quality at 808 nm wavelength. Using a three-dimensional spatial and temporal numerical model, several design considerations necessary to achieve high conversion efficiency, good beam quality and good output stability are discussed. To improve the conversion efficiency and broaden the amplified signal bandwidth simultaneously, the nonlinear crystal length and OPCPA parameters are analyzed and optimized with the concept of dissipating amplified idler between optical parametric amplification (OPA) of two crystals configuration. In the experiment, an amplifier consisting of two OPCPA stages of ‘L’ type configuration was demonstrated by using the optimized parameters. An amplified signal energy of 160 mJ was achieved with a total pump-to-signal efficiency of 35% (43% efficiency for the OPCPA stage 2). The output bandwidth of signal pulse reached 80 nm and the signal pulse was compressed to 24 fs. The energy stability reached 1.67% RMS at 3% pump energy variation. The optimized OPCPA amplifier operates at a repetition rate of 1 Hz and is used as a front-end injection for the main amplifier of SG-II 5PW laser facility.
BBO nonlinear optics optical parametric chirped-pulse amplifier petawatt laser 
High Power Laser Science and Engineering
2018, 6(4): 04000e58
Author Affiliations
Abstract
1 Joint Laboratory on High Power Laser and Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Science, Shanghai 201800, China
2 Shanghai Institute of Laser Plasma, China Academy of Engineering Physics, Shanghai 201800, China
Pulse contrast is an important parameter for ultrafast pulses. It shall be 108 or higher in order to avoid effect from noise before main pulse. Diagnostics with cross-correlation can achieve high temporal resolution such as ~7fs. Cross-correlation has advantage in pulse contrast measurement than autocorrelation because it can distinguish noise before or after main pulse. High dynamic range is also essential in pulse contrast measurement. Cross-correlation signal from a single shot is converted into a signal series through fiber array, which can be analyzed by a set of a PMT and an oscilloscope. Noise from nonlinear crystal and scatter needs decrease to improve dynamic range. And pulse power is also discussed in pulse contrast experiments. Time delay τ is generated by travel stage in measurement for repetition pulses. Then energy instability will generate error in this measurement. In measurement for single shot pulse, time delay τ is generated by slant angle of beams. The scanning procession is completed with thousands parts of beam section within a single shot, and error will generated from no uniformity in near field. Performance test of pulse contrast measurement is introduced in subsequent sections. Temporal resolution is testified by self-calibration. Dynamic range is judged by a parallel flat. At last pulse contrast of petawatt laser is diagnosed by a single shot cross-correlator with high confidence. The ratio is 10-6 at 50ps before main pulse, and 10-4 at 10ps before main pulse.
ultrafast lasers petawatt laser high power laser pulse contrast measurement cross-correlation optical instruments ultrafast measurements ultrafast devices 
Collection Of theses on high power laser and plasma physics
2015, 13(1): 93450R
作者单位
摘要
1 中国工程物理研究院 激光聚变研究中心, 四川 绵阳 621900
2 清华大学 工程物理系, 北京 100084
3 北京大学 应用物理与技术研究中心, 北京 100871
以带通平响应为优化目标,通过残余响应、带外残余响应相对误差以及残余响应平整度3个参数来优化滤片的厚度,设计了一套共有7个能量通道、连续覆盖18~88 keV能谱范围的Ross滤片谱仪。该谱仪能量通道宽度在2~20 keV之间。多数能量通道的带外残余响应相对误差低于10%,残余响应平整度优于20%。将该谱仪应用于微聚焦X光机上的高Z金属球壳高能X射线背光照相实验,结果表明:在不同的实验条件下,Ross滤片谱仪测得的能谱形状与理论模型给出的结果符合较好,测得的能谱不仅能够很好地解释背光照相图像,而且可用于根据图像反推客体的面密度。
惯性约束聚变 拍瓦激光 高能X射线 背光照相 Ross滤片 ICF petawatt laser high energy X-ray backlighting Ross filter 
强激光与粒子束
2015, 27(12): 122001
Author Affiliations
Abstract
1 Centre for Inertial Fusion Studies (CIFS), Imperial College London, UK
2 AWE plc, Aldermaston, UK
3 Central Laser Facility, STFC Rutherford Appleton Laboratory, UK
There are several petawatt-scale laser facilities around the world and the fidelity of the pulses to target is critical in achieving the highest focused intensities and the highest possible contrast. The United Kingdom has three such laser facilities which are currently open for access to the academic community: Orion at AWE, Aldermaston and Vulcan & Astra-Gemini at the Central Laser Facility (CLF), STFC (Science and Technology Facilities Council) Rutherford Appleton Laboratory (RAL). These facilities represent the two main classes of petawatt facilities: the mixed OPCPA/Nd:glass high-energy systems of Orion and Vulcan and the ultra-short-pulse Ti:Sapphire system of Astra-Gemini. Many of the techniques used to enhance and control the pulse generation and delivery to target have been pioneered on these facilities. In this paper, we present the system designs which make this possible and discuss the contrast enhancement schemes that have been implemented.
petawatt laser contrast wavefront correction plasma mirror 
High Power Laser Science and Engineering
2014, 2(4): 04000e34

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!