Author Affiliations
Abstract
1 State Key Laboratory of Precision Electronics Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
2 Key Laboratory of Optic-Electronics and Communication, Jiangxi Science and Technology Normal University, Nanchang 330038, China
Photoacoustic microscopy (PAM) has quickly developed into a noninvasive biomedical imaging technique to achieve detection, diagnosis, and monitoring. Compared with Q-switched neodymium-doped yttrium aluminum garnet or optical parametric oscillator lasers, a low-cost and small-size laser diode (LD) used as an alternative light source is conducive to achieving the miniaturization and integration for preclinical transformation. However, the LD’s low peak output power needs the high numerical aperture objective to attain tight focus, which limits the working distance (WD) of the system in only 2–3 mm, resulting in not achieving the backward coaxial confocal mode. Here, we present a compact visible LD-based PAM system with a reflective objective to achieve a 22 mm long WD and a 10 µm lateral resolution. Different depth subcutaneous microvascular networks in label-free mouse ears have successfully reappeared in vivo with a signal-to-noise ratio up to 14 dB by a confocal alignment. It will be a promising tool to develop into a handy tool for subcutaneous blood vessel imaging.
photoacoustic microscopy long working distance laser diode reflective objective 
Chinese Optics Letters
2021, 19(7): 071701

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!