作者单位
摘要
之江实验室类人感知研究中心,浙江 杭州 311121
光声成像(PAI)是一种结合了光学成像高对比度和超声成像深穿透性的生物医学成像模态,近年来得到了迅速发展。其中,光声显微成像(PAM)作为光声成像的重要实现方式之一,可以在毫米级的成像深度上实现微米级甚至百纳米级的分辨率,能够实现对生物组织结构、功能和分子的高分辨率成像,已在临床诊断、皮肤病检测和眼科等领域得到广泛应用。首先对PAM的工作原理和实现方式等进行基本介绍,之后围绕便携式PAM技术,从手持与半手持式、脑部可穿戴式及集成多模态3方面对其研究进展进行综述,随后探讨便携式PAM技术面临的挑战,最后进行总结与展望。
生物医学成像 光声成像 光声显微成像 便携式光声显微成像 
激光与光电子学进展
2024, 61(6): 0618017
马海钢 1,2,3,*吴家辉 1,2,3朱亚辉 1,2,3魏翔 1,2,3[ ... ]左超 1,2,3,**
作者单位
摘要
1 南京理工大学电子工程与光电技术学院智能计算成像实验室(SCILab),江苏 南京 210094
2 南京理工大学江苏省光谱成像与智能感知重点实验室,江苏 南京 210094
3 南京理工大学智能计算成像研究院(SCIRI),江苏 南京 210019
光声显微成像(PAM)是一种具有无损、多功能、高分辨率等特点的生物医学成像技术,通过检测光声信号进行图像重建可实现高分辨率和高深度的结构和功能成像,在生命科学、基础医学和医疗诊断中发挥着越来越重要的作用。首先概述光声显微技术的发展背景和原理特点,然后对利用光学增强、声学增强、人工智能增强及光学与声学互补的光声显微成像术促进成像性能提升的方法进行论述,最后讨论当前光声显微技术在生物医学研究中的广泛应用,并对未来技术的发展趋势进行展望。
生物医学影像 光声显微成像 高分辨 多功能 无损 
激光与光电子学进展
2024, 61(6): 0618006
Author Affiliations
Abstract
1 State Key Laboratory of Precision Electronics Manufacturing, Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
2 Key Lab of Optic-Electronic and Communication, Jiangxi Science and Technology, Normal University Nanchang 330038, China
Photoacoustic microscopy (PAM), due to its deep penetration depth and high contrast, is playing an increasingly important role in biomedical imaging. PAM imaging systems equipped with conventional ultrasound transducers have demonstrated excellent imaging performance. However, these opaque ultrasonic transducers bring some constraints to the further development and application of PAM, such as complex optical path, bulky size, and difficult to integrate with other modalities. To overcome these problems, ultrasonic transducers with high optical transparency have appeared. At present, transparent ultrasonic transducers are divided into optical-based and acoustic-based sensors. In this paper, we mainly describe the acoustic-based piezoelectric transparent transducers in detail, of which the research advances in PAM applications are reviewed. In addition, the potential challenges and developments of transparent transducers in PAM are also demonstrated.
Photoacoustic microscopy transparent ultrasound transducer LiNbO3 PMN-PT PVDF CMUT 
Journal of Innovative Optical Health Sciences
2023, 16(5): 2330001
Author Affiliations
Abstract
1 The University of Hong Kong, Faculty of Engineering, Department of Electrical and Electronic Engineering, Hong Kong, China
2 The University of Hong Kong, School of Biological Sciences, Hong Kong, China
3 The University of Hong Kong, School of Biomedical Sciences, LKS Faculty of Medicine, Pokfulam, Hong Kong, China
4 Hong Kong Science Park, Advanced Biomedical Instrumentation Centre, Hong Kong, China
Lipid imaging by conventional photoacoustic microscopy subjects to direct contact sensing with relatively low detection bandwidth and sensitivity, which induces superficial imaging depth and low signal-to-noise ratio (SNR) in practical imaging scenarios. Herein, we present a photoacoustic remote sensing microscopy for lipid distribution mapping in bio-tissue, featuring noncontact implementation, broad detection bandwidth, deep penetration depth, and high SNR. A tailored high-energy pulsed laser source with a spectrum centered at 1750 nm is used as the excitation beam, while a cofocused 1550 nm continuous-wave beam is used as the probe signal. The pump wavelength is selected to overlap the first overtone of the C-H bond in response to the intensive absorption of lipid molecules, which introduces a much-enhanced SNR (55 dB) onto photoacoustic remote sensing (PARS) signals. Meanwhile, the optical sensing scheme of the photoacoustic signals provides broadband detection compared to the acoustic transducer and refrains the bio-samples from direct contact operations by eliminating the ultrasonic coupling medium. Taking merits of the high detection sensitivity, deep penetration depth, broadband detection, and high resolution of the PARS system, high-quality tissue scale lipid imaging is demonstrated in a model organism and brain slice.
photoacoustic microscopy remote sensing lipid imaging near-infrared imaging label-free noncontact 
Advanced Photonics Nexus
2023, 2(2): 026011
穆根 1,2张振辉 1,2石玉娇 1,2,*
作者单位
摘要
1 华南师范大学生物光子学研究院激光生命科学教育部重点实验室,广东 广州 510631
2 华南师范大学生物光子学研究院广东省激光生命科学重点实验室,广东 广州 510631

光声成像结合了光学成像的高对比度和超声成像的深穿透性优势,能够利用内源性、外源性造影剂对比显示组织的结构、功能、代谢特征和分子、动力学信息等,同时可以实现从细胞器、细胞、组织到器官的多尺度成像,在生物医学研究中发挥着越来越重要的作用。简要回顾了光声成像的基本原理,重点总结了光声计算断层成像(PACT)、光声显微成像(PAM)、光声内窥成像(PAE)和光声分子成像近年来的研究热点及技术进展,主要涉及成像探测方式的选择与改进、低成本激发光源的替代方案、图像重建算法的进步、系统成像速度和分辨率的提高以及分子探针的新兴设计策略等,最后展望了光声成像的应用前景。

生物光学 成像系统 光声成像 光声计算断层成像 光声显微成像 光声内窥成像 光声分子成像 
中国激光
2022, 49(20): 2007208
Author Affiliations
Abstract
1 School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, P. R. China
2 Biomedical Engineering Lab, The University of Aizu, Aizu-Wakamatsu, Fukushima 965-8580, Japan
We propose a high-speed all-optic dual-modal system that integrates spectral-domain optical coherence tomography and photoacoustic microscopy (PAM). A 3 × 3 coupler-based interferometer is used to remotely detect the surface vibration caused by photoacoustic (PA) waves. Three outputs of the interferometer are acquired simultaneously with a multi-channel data acquisition card. One channel data with the highest PA signal detection sensitivity is selected for sensitivity compensation. Experiment on the phantom demonstrates that the proposed method can successfully compensate for the loss of intensity caused by sensitivity variation. The imaging speed of the PAM is improved compared to our previous system. The total time to image a sample with 256-256 pixels is -20 s. Using the proposed system, the microvasculature in the mouse auricle is visualized and the blood flow state is accessed.
Photoacoustic microscopy optical coherence tomography angiography dual-modal imaging sensitivity compensation noncontact detection 
Journal of Innovative Optical Health Sciences
2022, 15(4): 2250023
作者单位
摘要
暨南大学光子技术研究院广东省光纤传感与通信技术重点实验室,广东 广州 510632
光纤光声成像技术利用光纤传感器来探测由激光脉冲在生物体内激发出的超声波,从而实现对目标组织成分的高对比度成像。光纤超声传感系统的噪声特性是成像信噪比的决定性因素之一,本研究团队详细分析了超声敏感元件——正交双频光纤激光器与光放大器、光电探测器及数据采集模块等各环节对噪声的贡献,同时分析了系统噪声、拍频信号功率和频率噪声与光功率(或者光电流)之间的关系。研究结果表明,通过光放大器提升注入光探测器的光功率能够显著提升光纤传感系统的信噪比,当注入光探测器的光功率达到10 mW以上时,拍频信号频率抖动的均方值可由74 kHz降低到44 kHz,在50 MHz带宽内提供的噪声等效声压由32.9 Pa降低到19.5 Pa,信噪比提升4.5 dB。进一步,本研究团队基于光纤超声传感器构造了光纤光声显微镜,并采用该显微镜对小鼠耳部血管进行活体成像,结果发现提升信号光功率能够显著增强图像的信噪比。
医用光学 光声显微成像 光纤超声传感器 噪声特性 
中国激光
2022, 49(15): 1507204
作者单位
摘要
1 中国科学院深圳先进技术研究院生物医学光学与分子影像研究室,广东 深圳 518055
2 中国科学院深圳先进技术研究院劳特伯生物医学成像研究中心,广东 深圳 518055
3 南方医科大学珠江医院肝胆一科,广东 广州 510282
声学分辨率光声显微技术具有较高的光学对比度和声学分辨率以及大穿透深度等优势,是一种具有广阔应用前景的生物医学成像技术。聚光镜聚焦与单侧侧面激发等传统的激发方式具有光斑不均匀、存在光学热噪点、光能利用率低等不足,在一定程度上限制了声学分辨率光声显微技术的临床前和临床应用。本团队通过改进声学分辨率光声显微镜的激发方式,由单侧激发改为双侧激发,提升了成像过程中光束对复杂生物组织的覆盖面积,从而提升了成像质量。结果表明,双侧激发方式使得声学分辨率光声显微镜在复杂生物样品成像过程中可以获得更高的对比度和信噪比,成像性能更好。
生物光学 光声显微成像 声学分辨率 双侧激发 
中国激光
2022, 49(15): 1507201
作者单位
摘要
1 山西大学光电研究所, 量子光学与光量子器件国家重点实验室山西 太原 030006
2 山西大学, 极端光学协同创新中心山西 太原 030006
本文设计并搭建了一套激励光和超声探测器对向共轴共焦的具备亚细胞尺度成像分辨率和毫米级成像深度的光学分辨率光声显微成像(OR-PAM:Optical-resolution photoacoustic microscopy)系统。与基于多纵模脉冲激光激励的光声成像系统相比,使用自制的单纵模纳秒532 nm 脉冲激励光源,将光声探测的信号强度提高了1.35 倍,测得成像系统的轴向分辨率为18 m,横向分辨率为8 m,成像深度为1:54 mm,成像深度-横向空间分辨率比达192.5。利用研制的OR-PAM 系统对嵌有碳纤维丝的仿体样品以及活体小鼠的耳朵进行成像,获得了高分辨率的图像。
单纵模纳秒脉冲激光 光学分辨率 光声显微成像 亚细胞结构尺度 single longitudinal mode nanosecond pulsed laser optical resolution photoacoustic microscopy subcellular structure 
量子光学学报
2022, 28(1): 71
张芬 1,2张吴昱 1,2李春澍 1,2童壮壮 1,2[ ... ]熊科迪 1,2,*
作者单位
摘要
1 华南师范大学生物光子学研究院, 激光生命科学教育部重点实验室暨激光生命科学研究所, 广东 广州 510631
2 华南师范大学生物光子学研究院, 广东省激光生命科学重点实验室, 广东 广州 510631
注射微整形手术中可能会出现经皮针头扎破面部动脉血管的情况,这会导致注射药物(如玻尿酸)渗入血管形成栓子、引发血管栓塞,从而致使局部组织缺血、失明甚至中风。为解决这一问题,提出利用光声显微成像引导注射微整形手术。利用带有导针器的光声显微成像探头对固定角度插入的注射针头进行成像,得到针头的行进路线,然后对目标区域进行三维血管成像,通过图像融合并提取其中针头与血管相交区域的像素点数量,可判断针头是否会扎破面部动脉血管,降低手术风险。通过叶脉和活体小鼠成像实验验证了该方法的可行性,结果表明,该方法可以精确地引导扎针,在提高注射微整形手术安全性方面有良好的应用前景。
生物光学 光声显微成像 手术导航 注射微整形术 图像融合 
中国激光
2021, 48(21): 2107002

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!