Author Affiliations
Abstract
1 State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
2 School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
Underwater transportation of bubbles and gases has essential applications in manipulating and using gas, but achieving this function at the microscopic level remains a significant challenge. Here, we report a strategy to self-transport gas in water along a laser-induced open superhydrophobic microchannel with a width less than 100 μm. The femtosecond laser can directly write superhydrophobic and underwater superaerophilic microgrooves on the polytetrafluoroethylene (PTFE) surfaces. In water, the single laser-induced microgroove and water medium generate a hollow microchannel. When the microchannel connects two superhydrophobic regions in water, the gas spontaneously travels from the small region to the large area along this hollow microchannel. Gas self-transportation can be extended to laser-drilled microholes through a thin PTFE sheet, which can even achieve anti-buoyancy unidirectional penetration. The gas can overcome the bubble’s buoyance and spontaneously travel downward. The Laplace pressure difference drives the processes of spontaneous gas transportation and unidirectional bubble passage. We believe the property of gas self-transportation in the femtosecond laser-structured open superhydrophobic and underwater superaerophilic microgrooves/microholes has significant potential applications related to manipulating underwater gas.
femtosecond laser gas transportation superhydrophobicity underwater superaerophilicity water/gas separation 
International Journal of Extreme Manufacturing
2022, 4(1): 015002
作者单位
摘要
1 中南大学物理与电子学院超微结构与超快过程湖南省重点实验室, 湖南 长沙 410083
2 中南大学高性能复杂制造国家重点实验室, 湖南 长沙 410083
水下气体浸润性表面在许多领域都具有重要的作用,近年来受到了各国研究人员的密切关注。飞秒激光微纳制造技术作为一种全新的非接触式加工手段,近年来在调控材料表面水下气体浸润性方面进行了许多探索性研究。总结飞秒激光微纳制造技术在水下气体浸润性表面的最新研究进展,从水下超疏气表面、水下超亲气表面、水下超疏气-超亲气转换以及水下气体运输四个方面进行阐述,最后结合当前的研究状况指出该领域目前所存在的问题以及对前景的展望。
激光光学 飞秒激光 微纳制造 水下气体浸润性 超疏气 超亲气 
激光与光电子学进展
2020, 57(11): 111418

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!