激光与光电子学进展, 2020, 57 (11): 111418, 网络出版: 2020-06-02   

飞秒激光微纳制造水下气体浸润性表面 下载: 1833次特邀综述

Femtosecond Laser Micro-Nano Fabrication of Underwater Gas Wettable Surface
作者单位
1 中南大学物理与电子学院超微结构与超快过程湖南省重点实验室, 湖南 长沙 410083
2 中南大学高性能复杂制造国家重点实验室, 湖南 长沙 410083
摘要
水下气体浸润性表面在许多领域都具有重要的作用,近年来受到了各国研究人员的密切关注。飞秒激光微纳制造技术作为一种全新的非接触式加工手段,近年来在调控材料表面水下气体浸润性方面进行了许多探索性研究。总结飞秒激光微纳制造技术在水下气体浸润性表面的最新研究进展,从水下超疏气表面、水下超亲气表面、水下超疏气-超亲气转换以及水下气体运输四个方面进行阐述,最后结合当前的研究状况指出该领域目前所存在的问题以及对前景的展望。
Abstract
Underwater gas wettable surface plays an important role in many fields, and it has been paid close attention by researchers from various countries in recent years. As a new non-contact processing method, the femtosecond laser micro-nano fabricating technology has carried out many exploratory studies in controlling material surface underwater gas wettability in recent years. The recent research progress of the femtosecond laser micro-nano fabricating technology in the underwater gas wettability field were summarized from the four aspects of underwater superaerophobic surface, underwater superaerophilic surface, underwater superaerophilicity-superaerophobicity switching and underwater gas transportation. Finally, the existing problems of the field were pointed out combining with the current research status and the prospects of the future were put forward.

1 引言

浸润现象在自然界中起着非常重要的作用,受到学术界的广泛关注[1-10]。随着科学技术的不断发展,各种研究的不断深入,固/液二相界面间的浸润现象已不再满足各国科学家的研究需求,气/固/液三相界面间的浸润现象亟需探索[11-16]。作为气/固/液三相界面的典型代表之一,水下气体浸润性界面的研究进入了人们的视野并获得了广泛的关注,这主要由于其在许多领域具有潜在的研究价值与广阔的实际应用前景,如电催化[17-19]、细胞工程[20-22]、减阻[23-25]、气体运输[26-27]等。近年来,关于水下气体浸润性界面的研究已成为了学术界的一个研究热点。研究表明,这种浸润现象的产生受固体材料表面的化学成分与微观几何形貌的共同作用所致[28-30]。基于浸润性原理,人们采用不同的方法制备了各种各样的水下气体浸润性界面[31-33]。然而,这些方法普遍存在一定的局限性,如制备工艺复杂、制造周期长或污染环境等。更重要的是这些方法难以对材料表面进行精细化的加工,与当前的精确调控水下气体浸润性界面的研究趋势相矛盾[34-36]

飞秒激光加工作为一种全新的非接触式制造手段,具有简单快捷、精确可控、材料适用性广和环境友好等优势,是当前具有很大潜力的一种表面微纳结构的制备技术[37-43]。近年来,利用飞秒激光能够精密调控表面微小结构的特性,人们成功地将飞秒激光微纳加工技术用于调控材料表面的浸润性,并受到学术界的广泛关注。随着研究的不断进展,飞秒激光微纳加工调控界面浸润性的技术逐渐完善,从最初的加工材料单一扩展到适用于各种材料的处理,从功能应用单一发展到具有多功能应用。飞秒激光微纳加工技术发展迅猛,逐渐成为构建浸润性界面材料的重要技术手段之一[44-51]

本文系统总结了近年来利用飞秒激光微纳加工技术制备水下气体浸润性界面的相关研究。以水下气体浸润性模型与飞秒激光微纳加工技术的介绍作为研究背景,从水下超疏气表面、水下超亲气表面、水下超疏气-超亲气转换以及水下气体运输四个方面进行了系统的归纳概述。最后结合当前的研究现状对该领域所面临的挑战与前景进行总结与展望。

2 研究背景

2.1 水下气体浸润性模型

在理想情况下,即固体表面完全平滑时,其在水下对气泡的浸润性与在空气中对水滴的浸润性具有很大的相关性[52] ,如图1(a)所示。这是由二者与固体接触时的行为决定的[53]:空气中水滴落到固体表面前,首先会与空气相接触,水分子需要突破气体分子的阻碍才能到达固体表面;而水下气泡要与固体表面相结合同样会受到环境中水的阻隔,气体分子需要与水分子竞争固体表面的位置。因此,气体分子与水分子间的作用力决定了气泡或水滴在固体表面的状态[53]。水接触角是固/水/气的三相接触面处的张力达到平衡时,平滑接触面与液滴切线方向所形成的夹角,是判断空气中水滴在固体表面浸润情况的重要参数,其大小可根据Young式方程推导得出,即

cosθw=γSV-γSLγLV,(1)

式中:θw是水接触角;γSV,γSLγLV分别是固/气界面、固/水界面和水/气界面的表面自由能。由此可知,理想状态下的水接触角受三相界面间的表面自由能的共同影响。而水下气泡在固体表面的浸润性可以类比为一种特殊的空气环境中水滴的浸润性,因此其处于平衡时的气泡接触角(θb)同样可由Young式方程推导得出,即

cosθb=γSL-γSVγLV(2)

结合以上两个公式可得

θb=180°-θw,(3)

根据(3)式,推断出理想情况下气泡在水中于平滑固体表面的接触角与水滴在空气中于相同基底上的接触角的相关性:两者大小互补(实际情况中会有偏差)。固体表面的静态浸润性可根据其对水滴/气泡接触角的不同分为以下几种情况:当接触角大于90°时为疏水/气性,小于90°时为亲水/气性;在极端情况下,接触角大于150°时为超疏水/气性,接触角小于10°时为超亲水/气性。因此,理想情况下,亲水界面在水中表现出疏气性,而疏水界面在水中表现出亲气性。

非理想状态下,即固体表面具有微小的粗糙结构时,将具有超疏水性的材料浸入水中,水分子无法填充其表面的微纳结构,其表面剩余的空气会形成一层气膜[54-55]。当气泡在水中与超疏水材料表面接触时,能够轻易地被气膜吸收,与表面完全结合,对外表现出超亲气性[56-59],如图1(b)所示。而将具有微纳米级表面粗糙结构的超亲水材料浸入水中,由于毛细力的作用,水分子会进入表面的微纳结构从而形成一层水膜[60]。因此水中的气泡无法附着在超亲水材料表面,对外则表现出超疏气性,如图1(c)所示。

然而,实际情况中,有时根据水滴在固体表面的浸润情况无法准确判断出相应气泡的浸润性。该现象的产生原因是接触角滞后。以水中气泡为例,所谓接触角滞后,就是当固体基底倾斜一个特定的角度时,气泡达到最小(θmin)和最大(θmax)静态接触角时的余弦之差,如图2所示。通常情况下,气泡接触角大于150°且具有较小接触角滞后的表面是

图 1. 固体基质在空气和水中的浸润性关系。(a)空气中水接触角(θw)和水中气泡接触角(θb)的示意图;(b)超疏水/超亲气表面;(c)超亲水/超疏气表面

Fig. 1. Relationship between wettability of solid substrates in air and water. (a) Schematic of water contact angle (θw) in air and the bubble contact angle (θb) in water; (b) superhydrophobic/superaerophilic surface; (c) superhydrophilic/superaerophobic surface

下载图片 查看所有图片

图 2. 最大和最小水下气泡静态接触角示意图

Fig. 2. Schematic diagram of maximum (θmax) and minimum (θmin) static underwater bubble contact angles

下载图片 查看所有图片

水下超疏气的,与之相反,具有较小气泡接触角(小于10°)与较大接触角滞后的表面通常具有水下超亲气性[61]

2.2 飞秒激光微纳加工

随着科学技术的不断发展,人们对精密器件的需求量不断增大,同时其加工精度指标也在不断提升。面对这些严峻挑战,传统的微纳加工技术逐渐难以满足新时代的需求,寻求新的微纳加工方式成为必然的选择。经过科学家们的不断探索,飞秒激光以其极高的能量峰值、超短脉冲宽度、超高的聚焦力等特点在微纳制造领域中展现出极高的潜力,成为当前微纳加工领域有力工具之一[62-63]。作为一种先进的微纳制造手段,飞秒激光微纳加工技术不仅仅被用于制造精密器件,还因其物理加工的特点能够与各种领域相结合,直接或间接带动各方面的研究步入超微超快领域,充分展现出其旺盛的“活力”。

飞秒激光微纳加工系统当前主要分为两种,都包括飞秒激光器、光路系统、三维移动平台三个组成部分。其中飞秒激光器用于产生飞秒脉冲激光;光路系统由反射镜、透镜、光闸等光学器件组成,用于调控激光路线与激光出射的角度等;而三维移动平台则用于样品的固定以及位置的调整。其中一种加工系统为激光进入扫描振镜系统,由相应控制程序设定激光加工的路径以及速度等参数,从而将光束聚焦到三维移动平台上的样品表面进行加工。而另一种是通过透镜或物镜将激光束聚焦到三维移动平台上的样品表面,再通过控制器驱动平台移动进行扫描加工,加工过程利用CCD进行实时监控[51]

近几年来,研究者们成功地将飞秒激光微纳制造技术应用于水下气体浸润性界面的调控[64-66]。利用飞秒激光的高功率、超短脉冲等特点,只需直接扫描烧蚀材料便可在其表面精确地构建出各种不同的微纳图案,而不会像普通激光烧蚀一般出现无规则的表面形貌。又因为表面浸润性的产生受固体材料表面的化学成分与微观几何形貌的共同作用,这些通过飞秒激光构建的微小图案能够使材料表面展现出不同的水下气体浸润性。同时,飞秒激光微纳加工的适用范围相当广泛,包括金属、纺织物、塑料、有机物在内的众多材料均可通过飞秒激光烧蚀改变其表面浸润性[67-69]。相较于某些局限于特定材料的加工方式,其在浸润性调控方面具有更大的应用价值。因此,研究通过飞秒激光微纳制造技术调控水下气体浸润性界面具有重要意义。

3 水下气体浸润性表面

3.1 水下超疏气表面

气体无处不在,它以空气的形式存在于人们生活的环境中,是人类生存不可缺少的一部分。在水中,它以气泡的状态存在,使水下的世界更加绚丽多彩[70-72]。然而,在某些情况下,水中气泡的存在也会产生负面影响[73-74]。例如:在输送液体的管道中,气泡的存在会腐蚀管道,降低设备的使用寿命,造成不必要的财产损失;潜水时,潜水镜上的气泡会阻碍视线,增加潜水员在水底的危险系数;做化学实验时,气泡的产生会影响实验,尤其是固体材料间的反应,气泡的堆积会严重影响反应速率。因此,研究者们为解决水下气泡附着固体表面的问题付出许多努力。其中,通过飞秒激光制备具有水下超疏气性的表面便是热门的研究方向之一[75-77]

为制备水下气泡低黏附的材料,基于飞秒激光加工的方法,Yang等[75]以铜为基底在其表面烧蚀形成了一层微/纳米级的复合结构。飞秒激光加工后,所制备的粗糙表面具有三维周期性的条纹结构,内部包含大量随机排列的纳米结构,影响了该金属表面的水下气泡浸润性。对加工后铜样品的浸润性能进行测试,发现其表面具备良好的水下超疏气性。作为浸润性的重要参数,加工前后铜片表面的水下气泡接触角发生了较大变化:加工前铜片在水中对气泡的接触角约为120°,气泡依附在铜片表面呈半球状;加工后气泡的接触角提高至159°,气泡在样品表面能够近似维持球形。在水下将气泡与经飞秒激光处理的铜片表面轻轻接触再离开的整个过程中,气泡并未附着铜片且很容易分离,这表明激光处理后的铜片表面对气泡的黏附性很低。由此可知,通过飞秒激光直接扫描制备的微纳复合铜片表面具有良好的水下抗气泡的能力。

相比于纯金属材料,合金材料在实际生活中具有更广泛的应用。Jiao等[76]通过飞秒激光烧蚀的方法在铝合金薄片表面加工出粗糙的沟槽结构。加工后的表面有规律地分布着微小的凹槽,而在其上还附着了一些微纳米级别的颗粒。飞秒激光诱导出粗糙结构后,铝合金表面的水下抗气泡能力增强:加工前其水下气泡接触角为111°,表现为水下疏气性,如图3(a)所示;飞秒激光处理后,其表面的浸润性被进一步极化,水下气泡接触角达到153°,表现为水下超疏气特性,如图3(b)所示。

图 3. 飞秒激光制备的水下超疏气表面。(a)(b)铝合金表面[76];(c)~(f)硅表面[77]

Fig. 3. Different underwater superaerophobic surfaces fabricated by femtosecond laser. (a)(b) Aluminium alloy surface[76];(c)-(f) silicon surface[77]

下载图片 查看所有图片

图 4. 飞秒激光制备水下超亲气表面。(a)~(c) PDMS表面[77];(d)~(h)铝表面及相应浮力装置[82];(i)(j) PTFE表面[83]

Fig. 4. Different underwater superaerophilic surfaces fabricated by femtosecond laser. (a)-(c) PDMS surface[77]; (d)-(h) aluminum surface and corresponding buoyancy device[82]; (i)(j) PTFE surface[83]

下载图片 查看所有图片

同样是制备水下超疏气材料,Yong等[77]使用本身便具有水下疏气性的硅材料作为基底。为加强硅的水下疏气能力,通过飞秒激光一步直接扫描的方案在其表面烧蚀出分层的微观结构,成功将其浸润性进一步极化,制备出具有水下超疏气性的粗糙界面。如图3(c)(d)所示,加工后的硅表面分布着周期大约为10 μm,高度为7~8 μm的周期性的微柱阵列,每一个微柱都被丰富的纳米颗粒进一步覆盖。飞秒激光烧蚀后,硅表面具有高达162°的水下气泡接触角,展现出其优异的水下抗气泡能力,如图3(e)所示。在水下,气泡附着在加工后的硅表面后,只需将样品倾斜2°,气泡便能够沿着表面滚动,这表明经飞秒激光诱导出的硅微纳结构对气泡同样具有极低的黏附性,如图3(f)所示。

3.2 水下超亲气表面

为解决水下气泡引发的各类问题,除制备能够防止水下气泡附着的表面外,主动收集水中的气泡也是解决问题的一种有效手段[78-81]。研究表明,水下超亲气材料能够有效地吸附并聚集水中的气泡,达到清除以及利用水中气泡的效果,是当前研究的热点之一。Yong等[77]通过飞秒激光微纳加工技术,在聚二甲基硅氧烷(PDMS)表面烧蚀出微纳米级别的粗糙结构,如图4(a)、(b)所示,烧蚀后PDMS表面含有大量的几微米大小的团块,且团块上布满了许多纳米级的凸起,这些经过飞秒激光烧蚀而成的微观结构影响了PDMS表面的水下气泡浸润性,使PDMS表面表现出水下超亲气特性。如图4(c)所示,一个气泡在水中与加工后的粗糙PDMS表面接触,在极短的时间(35 ms)内便完全扩散开来,如同气泡被吸收,气泡/水界面几乎与样品表面重合,即此时气泡的接触角为0°,展现出经飞秒激光加工处理后PDMS表面的极端水下亲气性。

与之类似,为了制备出具有水下超亲气性的表面,Zhan等[82]以铝作为基底,通过调整飞秒激光加工参数调控铝片表面的微观形貌,令其表面变得粗糙,如图4(d)、(e)所示,从而获得水下捕捉收集气泡的能力。为了进一步加强其水下收集气体的能力,将加工后的粗糙铝表面浸入硬脂酸水溶液中,通过控制浸入时间来改变其表面能,得到具有水下极端亲气性的表面。加工后的样品表面虽然能够收集水下气体产生浮力,然而仅靠单独一个表面收集的气体依然无法产生足够的浮力带动铝片上浮,如图4(f)所示。因此设计了一种能够捕捉与存储大量水下气泡以产生足够浮力的设备,如图4(g)、(h)所示,将两片内表面加工的铝片通过塑料棒连接,通过控制铝片之间的高度调控可收集气泡的数量,当捕捉到的气泡足够多时,产生的浮力便能使金属装置从水中浮起,甚至多余的浮力还能让该装置托起重物。

基于飞秒激光微纳加工的方式,Hu等[83]在PTFE表面进行烧蚀以进一步提高其粗糙度,使其成为水下超亲气表面。加工后的超亲气表面被微/纳米级的层次结构所覆盖,具有较高的粗糙度,与未加工的光滑表面形成明显对比。对激光烧蚀前后表面的水下气泡接触角进行测量,加工前水下气泡接触角为78°,气泡在其表面呈半球形,如图4(i)所示;飞秒激光烧蚀出粗糙结构后,其表面表现出水下超亲气性,气泡接触角仅为3°,如图4(j)所示。因此,经过飞秒激光直接扫描处理后,PTFE表面被赋予了水下超亲气性。

无论是水下超疏气或是水下超亲气的界面材料,均可通过飞秒激光微纳制造技术调控相应材料的表面微观结构得到,由此展现了该技术在制造不同水下气体浸润性界面领域的潜力。

3.3 水下超疏气-超亲气转换

水下超疏气与水下超亲气材料均具有广泛的实用性,因而受到了国内外许多研究人员的关注[84-86]。同时,近年来能够实现可切换浸润性的表面,因其应用方便,功能多样,适用性广等特点吸引了众多的目光。因此,能够可逆地转换水下超疏气与超亲气状态的材料或方法便成了水下气泡浸润性界面领域的研究热点之一。能够实现可切换浸润性的材料或方案通常是依靠不同的外部刺激或直接的物理化学处理所获得,如温度、湿度、光线、pH值、真空、等离子体处理、电势和磁场等[87-95]。基于以上观点,研究者们在水下超疏气-超亲气转换领域取得了众多的成果[96-100]

聚四氟乙烯(PTFE)是一种化学物理性质极其稳定的材料,传统的加工方法难以精确调控其表面的微观结构,因而想要改变PTFE表面的浸润性便成为一个较为困难的任务[51]。然而,飞秒激光可以轻易地在PTFE表面烧蚀出微纳米级的精密图案,从而影响其表面浸润性。基于飞秒激光微纳加工技术,Huo等[96]在PTFE表面构建出微纳米级别的微观结构,表现为大量微小凸起与孔隙形成的类珊瑚丛状形貌,获得粗糙的水下超亲气PTFE表面,如图5(a)、(b)所示。得益于PTFE的高化学物理稳定性,所制备的超亲气表面非常稳定,正因如此,转换其表面的水下气泡浸润性愈发困难。为了可逆转换所制备PTFE样品表面的水下气泡浸润性,研究团队巧妙地通过将样品置于水中后抽真空的方式将其从水下超亲气转换为水下超疏气表面,转换后水下气泡接触角达到157.5°。而经过干燥箱干燥后,水下超亲气特性又会重新回到PTFE样品表面,如图5(c)、(d)所示。此外,利用这两种浸润状态的稳定转换,能够轻易实现水下气泡的捕捉与选择性通过。

图 5. 飞秒激光制备的可切换水下超亲/疏气PTFE表面[96]。(a)(b)表面微观结构;(c)(d)水下超亲气与超疏气的可逆转换

Fig. 5. Switchable underwater superaerophilic/superaerophobic PTFE surfaces fabricated by femtosecond laser[96]. (a)(b) Surface microstructure; (c)(d) reversible switching between underwater superaerophilicity and superaerophobicity

下载图片 查看所有图片

与PTFE类似,同为聚合物的聚二甲基硅氧烷(PDMS)表面亦可实现水下气泡浸润性的可逆转换。Yong等[97]首先通过飞秒激光一步直接扫描处理获得了具有水下超亲气性的PDMS表面。激光烧蚀后,获得的粗糙PDMS表面随机分布着许多微纳米级别的爆米花状凸起,凸起的直径范围在400 nm~1.6 μm之间,同时每个凸起的表面还进一步覆盖了大量的纳米级颗粒,直径仅为60~140 nm,如图6(a)~(c)所示。当样品浸入水中后,这些微纳结构使PDMS表面很容易吸收气泡,表现出水下超亲气特性。经过测试,此时水中气泡能够轻易地附着在样品表面,气泡接触角趋近于0°,相应地,样品在空气中的水接触角为155°。加工后的PDMS样品表面经过氧等离子体进一步处理后,表面自由能增加,水下气泡在其表面的接触角达到156°,表面表现出对水下气体的极端排斥性,即水下超疏气性,相应地,样品在空气中表现出超亲水性(水接触角为6°),如图6(d)~(g)所示,其水下气泡浸润状态发生完全相反的转变。将等离子体处理后的PDMS表面置于空气中,经过10~24 h的静置后,便能够重新恢复水下超亲气性,整个过程展现出水下气泡浸润性可切换的能力。

图 6. 飞秒激光制备的可切换水下超亲/疏气PDMS表面[97]。(a)~(c)表面微观结构;(d)~(g)水下超亲气与超疏气之间的转换

Fig. 6. Switchable underwater superaerophilic/superaerophobic PDMS surface fabricated by femtosecond laser[97].(a)-(c) Surface microstructure; (d)-(g) switching between underwater superaerophilicity and superaerophobicity

下载图片 查看所有图片

图 7. 飞秒激光制备的可切换水下超亲/疏气钛表面。(a)~(d) Jiao等[98]制备的样品;(e)~(i) Jiao等[99]制备的样品

Fig. 7. Switchable underwater superaerophilic/superaerophobic titanium surface fabricated by femtosecond laser.(a)-(d) Sample treated by Jiao et al.[98]; (e)-(i) sample fabricated by Jiao et al.[99]

下载图片 查看所有图片

除PTFE与PDMS两种聚合物材料之外,金属钛在水下气泡浸润性可逆转换方面同样有一定的研究进展。Jiao等[98]采用飞秒激光垂直交叉扫描的方式在钛表面加工出粗糙微观结构。如图7(a)~(c)所示,飞秒激光烧蚀后,样品表面具有规则方形微柱阵列,同时每个方形微柱由四个微锥和许多随机的较小的纳米颗粒组成。加工后的粗糙钛表面展现出了水下超疏气的能力,水下气泡接触角达156°,在空气中则表现为超疏水,水滴的接触角为152°。以加工后的水下超疏气钛片为基底,通过在黑暗环境下加热以及在酒精中用紫外线照射的方法实现了其水下气泡浸润性的可逆切换。将加工后的样品用不透明的铝箔包裹,使其处于黑暗环境,再放置于加热平台上以200 ℃加热0.5 h后,飞秒激光制备的水下超疏气钛表面便转变为水下超亲气表面,水中气泡在转换后表面上的接触角为4°,相应地,样品表面在空气中对水的浸润性转变为超疏水,水的接触角为156°。与此相反,将样品放入乙醇中,以紫外线直接照射1 h后,样品恢复其水下超疏气性,如图7(d)所示,整个过程可逆并可多次重复进行。

基于非原位调控水下气泡浸润性的局限性,如复杂的转换过程、较长的转换时间以及额外的设备使用等,Jiao等[99]提出了一种通过控制水溶液中乙醇的含量来实现原位可调气泡浸润性的简单方案。以钛作为加工材料,利用飞秒激光烧蚀的方法,在其表面制备出以TiO2为主的城堡状微纳结构,如图7(e)~(g)所示,该结构赋予钛表面水下超疏气的能力。经过黑暗环境中加热处理后,样品由水下超疏气特性转换成了水下超亲气特性。再将样品置入水中,通过往纯水中不断加入乙醇的方式动态调控水中乙醇的含量,使粗糙钛表面的水下气泡接触角从6°逐渐增加到157°,样品表面重新转换为水下超疏气,如图7(h)、(i)所示。同时,研究人员发现不仅是乙醇,甲醇和异丙醇溶液同样能够调控样品的水下气泡浸润性,而蔗糖溶液以及盐溶液则无法达到效果。通过该调控方案,经飞秒激光加工的钛表面的原位可调水下气泡浸润性可以轻松实现。利用该特性,将经黑暗中加热处理过的粗糙钛箔样品打孔后与不同浓度的乙醇溶液结合,可实现水下原位可控的气泡捕捉/阻挡。

虽然目前已经制备出大量可切换的浸润性表面,涉及各种材料各种特殊方法,但这些表面大部分都是依靠其基底的性质来实现浸润性的可逆切换,即功能的实现受限于材料。为解决该问题,Yong等[100]提出一种能够可逆转化众多材料表面水下气泡浸润性的策略。飞秒激光微纳加工是调控水下气泡浸润性的重要手段。包括铝、不锈钢、铜、镍、PTFE、PDMS在内的一系列材料,经过飞秒激光扫描处理形成表面微纳结构后,都在水中表现出超亲气/亲气性,在空气中表现出超疏水性,而该转换方案便是以此种材料为基础来实现的。以铝为例,飞秒激光在其表面诱导出微纳结构后,将其浸入水中,气泡与粗糙铝表面接触时迅速扩散,表现出水下超亲气性,相应地样品表面在空气中表现为超疏水性。若预先用乙醇溶液将铝表面润湿,再浸入水中,其表面则表现出水下超疏气性,水下气泡浸润状态发生完全相反的转换,而恢复样品表面的水下超亲气性也十分简单,只需将其进行干燥即可,如图8所示。同样地,其他飞秒激光制备的超亲气底物亦可通过该方案实现水下气泡浸润性的可逆切换。且无论哪种基质,这种切换过程均可快速重复多次。

图 8. 在飞秒激光处理过的铝表面进行水下超亲气和超疏气间的可逆切换[100]

Fig. 8. Reversible switching between underwater superaerophilicity and superaerophobicity on the femtosecond laser treated aluminum surface[100]

下载图片 查看所有图片

图 9. 飞秒激光制备的具有形状梯度的水下超亲气PTFE表面。(a)~(d) Yin等[104]制备的样品;(e)~(h) Duan等[105]制备的样品

Fig. 9. Underwater superaerophilic PTFE surfaces with shape gradient fabricated by femtosecond laser. (a)-(d) Sample treated by Yin et al.[104]; (e)-(h) sample treated by Duan et al.[105]

下载图片 查看所有图片

3.3 水下气体运输

水下气体在自然界中普遍存在,对人们的生活造成许多或积极或消极的影响,是工业生产与日常生活中的重要元素。为了能够对其进行有效利用,关于水下气体运输的研究获得了学术界的广泛关注,取得了重要进展[101-103]。其中,通过具有水下特殊浸润性的界面操控水下气泡行为,是研究水下气体运输的一个重要方案,吸引了众多研究者的目光[104-108]

基于飞秒激光加工技术,Yin等[104]使用飞秒激光将矩形的PTFE片切割成梯形,再经过飞秒激光逐行直接扫描,获得表面粗糙的梯形PTFE样品,如图9(a)所示。图9(b)为原始的PTFE对应的表面微观结构图像,加工后的图像为图9(c)(d)。加工后的PTFE表面在水中表现出超亲气性,将其浸入水中,受表面附着空气的影响,在水下展现出银色的镜面现象。利用梯形PTFE表面的形状梯度力以及水下超亲气性,研究人员实现了气泡的自驱动与定向运输:气泡在梯形小端被捕获后,短时间内便自发运输至大端;在大端被吸收的气泡则保持静止。由PTFE表面捕获的气泡,受定向运输的影响最终汇聚于梯形大端,并因浮力的增大,脱离PTFE表面,浮于水面。此外,该样品在腐蚀和摩擦测试中表现出较强的稳定性。同样地,Duan等[105]以PTFE材料作为基底,通过飞秒激光直接扫描的方法制备了一种水下超亲气的PTFE锥体,如图9(e)所示。图9(f)~(h)为激光烧蚀后的PTFE锥体表面的微观结构图像。飞秒激光处理后的锥体浸入水中后,因其具有水下超亲气性,气泡会汇聚到样品表面,之后在拉普拉斯压力的作用下,气体能够自发定向地沿椎体向远离尖端的方向输送。此外,经过测试,加工后的PTFE锥体同样具有良好的耐腐蚀性及稳定性。

利用具有形状梯度的水下超亲气表面的拉普拉斯压力是实现水下气体运输的有效手段之一,除此之外,具有非对称浸润性的表面同样能够实现水下气体的定向运输。Yin等[106]通过飞秒激光直接扫描技术,在PTFE网膜表面的一侧加工出粗糙的微纳结构,使其两侧具有不同的表面微观形貌,成功获得具有非对称上下表面的样品,如图10(a)~(c)所示,其中图10(b)为样品未加工表面微观结构图像,而图10(c)对应激光加工的表面。由于激光加工后PTFE网膜上下表面微纳结构不同,样品两侧展现出的水下气泡浸润状态不同,样品在水中与气泡接触后呈现出不同的接触角:气泡从下往上接触到激光加工面时,立刻扩散开来形成微凸气膜形态,此时气泡接触角仅为21°,如图10(d)所示;而气泡接触未加工面时,在144 ms内便穿过PTFE网膜以致气泡在其表面的接触角为0°,如图10(e)所示。气泡能够穿过PTFE网膜的未加工面到达另一侧,却无法穿过飞秒激光处理过的表面,由此展现出经飞秒激光单面加工后PTFE网膜具有定向运输水下气体的能力。受此启发,可以通过设计这种具有非对称气泡浸润性的网膜,实现在水下环境中气体的定向输送与收集,最终达到清除或利用水下气体的目的。

图 10. 飞秒激光制备的具有水下非对称浸润性PTFE表面[106]。(a)激光烧蚀过程示意图;(b)(c)表面微观结构;(d)(e)两侧的水下气泡接触角

Fig. 10. PTFE surfaces with underwater asymmetric wettability fabricated by femtosecond laser[106]. (a) Schematic of the laser ablation process; (b)(c) surface microstructure; (d)(e) underwater bubble contact angle on both sides

下载图片 查看所有图片

同样是利用表面的非对称性,Yan等[107]以铝作为加工材料,经过飞秒激光钻孔、表面氟化和氟化去除操作,制备出一种能够单向运输水下气体的Janus铝膜,如图11(a)所示。首先,利用飞秒激光微钻孔技术在铝片上加工出高度均匀的锥形微孔阵列,将上下表面联通;再通过氟硅烷对样品上下表面进行氟化处理,使其两面均具有水下超亲气性;最后采用飞秒激光直接扫描的方式去除底部的氟化材料,使其转换为气泡接触角为118°的疏气表面,从而制备出上下表面具有不对称性的Janus铝膜。该Janus膜能够有效地实现气泡的定向运输,气泡可以自发地从水下疏气表面通过微孔向水下超亲气表面移动,相反,气泡难以从超亲气表面向水下疏气表面运输,如图11(b)、(c)所示。

通常被认知的气泡运输都发生在水下,即气泡在竖直方向运输,目前的研究大部分都是如此,而关于气泡在水平面上运输行为的探索较少。Chen等[108]基于飞秒激光垂直交叉扫描的方法,制备出一种由硅油和Fe3O4/PDMS膜组合而成的光响应界面,其中Fe3O4/PDMS膜表面分布着具有水下亲气性的微柱阵列,如图11(d)所示。其制备过程分为多步,先将含有Fe3O4粒子的光热材料与PDMS凝胶均匀混合,以此制备出混合的Fe3O4/PDMS膜,再利用飞秒激光垂直交叉扫描的方案在其表面加工出均匀的微柱阵列,其长宽高分别为57.5,83.3,38.5 μm,加工出的微柱阵列具有水下亲气特性。最后在毛细力的作用下,将硅油注入制备好的粗糙薄膜表面,得到的界面能够响应远程近红外光的刺激,使气泡在其表面沿任意方向移动。其原理是通过Fe3O4粒子的光热效应,在近红外光的刺激下,被照射点的温度在短时间内急剧升高,因而出现的温度梯度能够诱导出使气泡向温度升高的方向移动的驱动力。在该机制下,气泡能够响应来自不同方向上的光刺激而向任意方向移动。

图 11. 飞秒激光制备的气泡运输表面。(a)~(c) Janus铝膜[107];(d)光响应界面[108]

Fig. 11. Bubble transportation surface fabricated by femtosecond laser. (a)-(c) Janus aluminum membrane[107]; (d) light-responsive interface[108]

下载图片 查看所有图片

4 结束语

水下气体浸润性界面在许多领域具有广阔的应用前景。而飞秒激光微纳加工技术相比于传统的微加工方案具有更高的加工精度,且能够适用于更广泛的加工材料,更重要的是其作为完全的物理加工技术,对环境不造成任何污染,因此当前已成为构建水下气体浸润性界面的重要手段之一。此外,飞秒激光对表面结构的精确设计同样符合了当前精密加工的研究趋势。本文系统总结了近年来利用飞秒激光微纳加工技术调控水下气体浸润性界面的研究进展。介绍了相应的研究背景,对水下超疏气表面、水下超亲气表面、水下超疏气-超亲气转换以及水下气体运输四个方面的应用进行了归纳阐述。

迄今为止,飞秒激光微纳加工技术仍处于起步阶段,离工业化应用还有很长一段距离,虽然目前在调控水下气体浸润性界面领域展现出巨大的潜力,但依然面临着许多挑战,许多关键的科学与技术问题亟待解决。1)飞秒激光微纳加工技术目前仍停留在实验研究阶段,虽然能够制备出各种具有水下特殊浸润性的界面,但制备出的表面中具有实际应用价值的并不多,该技术的潜力还有待开发。2)与大多数传统微纳加工方式相比,采用大功率高重复频率飞秒激光器与扫描振镜相结合的微纳加工技术在效率方面取得极大提升,但目前飞秒激光加工设备昂贵,其相对成本仍然很高。3)飞秒激光能够在材料表面制备出微纳结构进而调控其浸润性,然而加工出的粗糙结构会因材料和环境等因素的差异而出现不同的结果,其内在机理依旧不明朗。4)稳定性是实际应用中无法避免的问题。然而,目前通过飞秒激光制备的部分功能性材料无法维持长期稳定,浸润性会随放置时间的增加而逐渐发生变化,其在空气或水下等环境中的浸润性演化过程仍需探究。5)能够用于飞秒激光加工的材料相当广泛,理论上几乎所有的已知材料都能使用该技术加工。然而,目前用于制备浸润性界面的材料普遍硬度不高,对于金刚石、碳化硅等高硬度材料的研究较少。关于飞秒激光对这些高硬度材料表面浸润性的影响有待探索。

同其他正在发展中的工艺类似,飞秒激光微纳制造技术同样受到许多瓶颈的困扰,致使当前在调控水下气体浸润性表面方面表现并不理想,但其在精密制造领域相比于其他大部分微加工技术仍具备较大的优势,进行一些复杂精细的表面图案构建时该技术更加灵活,且相应的加工控制系统十分智能化,操作简便,无需经过复杂的培训便可熟练运用,这些都为其将来真正投入市场奠定了良好的基础。而随着研究的不断深入,对飞秒激光加工内在原理的理解不断加深,当前存在的科学技术问题终将会被解决。因此,可以肯定:通过飞秒激光微纳制造技术来制备水下气体浸润性表面,在将来必定会成为一个重要的发展方向。

参考文献

[1] Zhang Y L, Xia H, Kim E, et al. Recent developments in superhydrophobic surfaces with unique structural and functional properties[J]. Soft Matter, 2012, 8(44): 11217-11231.

[2] Darmanin T, Guittard F. Recent advances in the potential applications of bioinspired superhydrophobic materials[J]. Journal of Materials Chemistry A, 2014, 2(39): 16319-16359.

[3] Liu K S, Yao X, Jiang L. Recent developments in bio-inspired special wettability[J]. Chemical Society Reviews, 2010, 39(8): 3240-3255.

[4] Xia F, Jiang L. Bio-inspired, smart, multiscale interfacial materials[J]. Advanced Materials, 2008, 20(15): 2842-2858.

[5] Liu X J, Liang Y M, Zhou F, et al. Extreme wettability and tunable adhesion: biomimicking beyond nature?[J]. Soft Matter, 2012, 8(7): 2070-2086.

[6] Chang B S, Zhang M X, Qing G Y, et al. Dynamic biointerfaces: from recognition to function[J]. Small, 2015, 11(9/10): 1097-1112.

[7] Zhang X X, Wang L, Levänen E. Superhydrophobic surfaces for the reduction of bacterial adhesion[J]. RSC Advances, 2013, 3(30): 12003-12020.

[8] Zhang Y B, Chen Y, Shi L, et al. Recent progress of double-structural and functional materials with special wettability[J]. Journal of Materials Chemistry, 2012, 22(3): 799-815.

[9] Xue Z X, Cao Y Z, Liu N, et al. Special wettable materials for oil/water separation[J]. Journal of Materials Chemistry A, 2014, 2(8): 2445-2460.

[10] 张径舟, 陈烽, 雍佳乐, 等. 飞秒激光诱导仿生超疏水材料表面的研究进展[J]. 激光与光电子学进展, 2018, 55(11): 110001.

    Zhang J Z, Chen F, Yong J L, et al. Research progress on bioinspired superhydrophobic surface induced by femtosecond laser[J]. Laser & Optoelectronics Progress, 2018, 55(11): 110001.

[11] Ternes T A, Meisenheimer M. McDowell D, et al. Removal of pharmaceuticals during drinking water treatment[J]. Environmental Science & Technology, 2002, 36(17): 3855-3863.

[12] Donne S W, Evans G M. Hydrogen bubble flotation of silica[J]. Advanced Powder Technology, 2010, 21(4): 412-418.

[13] Lu Z Y, Zhu W, Yu X Y, et al. Ultrahigh hydrogen evolution performance of under-water “superaerophobic” Mo S2Nanostructured electrodes[J]. Advanced Materials, 2014, 26(17): 2683-2687.

[14] Siddiqui M S, Amy G L, Murphy B D. Ozone enhanced removal of natural organic matter from drinking water sources[J]. Water Research, 1997, 31(12): 3098-3106.

[15] Bonn D, Eggers J, Indekeu J, et al. Wetting and spreading[J]. Reviews of Modern Physics, 2009, 81(2): 739-805.

[16] Kibsgaard J, Chen Z B, Reinecke B N, et al. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis[J]. Nature Materials, 2012, 11(11): 963-969.

[17] Xu W W, Lu Z Y, Sun X M, et al. Superwetting electrodes for gas-involving electrocatalysis[J]. Accounts of Chemical Research, 2018, 51(7): 1590-1598.

[18] Wang S K, Tseng F, Yeh T K, et al. Electrocatalytic properties improvement on carbon-nanotubes coated reaction surface for micro-DMFC[J]. Journal of Power Sources, 2007, 167(2): 413-419.

[19] da Silva L M, Franco D V, de Faria L A, et al. Surface, kinetics and electrocatalytic properties of Ti/( IrO2 + Ta2O5) electrodes, prepared using controlled cooling rate, for ozone production[J]. Electrochimica Acta, 2004, 49(22/23): 3977-3988.

[20] Handa-Corrigan A, Emery A N, Spier R E. Effect of gas: liquid interfaces on the growth of suspended mammalian cells: mechanisms of cell damage by bubbles[J]. Enzyme and Microbial Technology, 1989, 11(4): 230-235.

[21] Wu J Y, Ruan Q. Peter Lam H Y. Effects of surface-active medium additives on insect cell surface hydrophobicity relating to cell protection against bubble damage[J]. Enzyme and Microbial Technology, 1997, 21(5): 341-348.

[22] Yap R K L, Whittaker M, Diao M, et al. Hydrophobically-associating cationic polymers as micro-bubble surface modifiers indissolved air flotation for cyanobacteria cell separation[J]. Water Research, 2014, 61: 253-262.

[23] Ceccio S L. Friction drag reduction of external flows with bubble and gas injection[J]. Annual Review of Fluid Mechanics, 2010, 42(1): 183-203.

[24] Zhang S S, Ouyang X, Li J, et al. Underwater drag-reducing effect of superhydrophobic submarine model[J]. Langmuir, 2015, 31(1): 587-593.

[25] Zhao D Y, Huang Z P, Wang M J, et al. Vacuum casting replication of micro-riblets on shark skin for drag-reducing applications[J]. Journal of Materials Processing Technology, 2012, 212(1): 198-202.

[26] Chen C, Shi L A, Huang Z C, et al. Microhole-arrayed PDMS with controllable wettability gradient by one-step femtosecond laser drilling for ultrafast underwater bubble unidirectional self-transport[J]. Advanced Materials Interfaces, 2019, 6(12): 1900297.

[27] Lü X D, Jiao Y L, Wu S Z, et al. Anisotropic sliding of underwater bubbles on microgrooved slippery surfaces by one-step femtosecond laser scanning[J]. ACS Applied Materials & Interfaces, 2019, 11(22): 20574-20580.

[28] Ragesh P, Anand Ganesh V, Nair S V, et al. A review on ‘self-cleaning and multifunctional materials’[J]. Journal of Materials Chemistry A, 2014, 2(36): 14773-14797.

[29] Wang X, Wang Z B, Heng L P, et al. Stableomniphobic anisotropic covalently grafted slippery surfaces for directional transportation of drops and bubbles[J]. Advanced Functional Materials, 2020, 30(1): 1902686.

[30] Lu Z Y, Xu W W, Ma J, et al. Superaerophilic carbon-nanotube-array electrode for high-performance oxygen reduction reaction[J]. Advanced Materials, 2016, 28(33): 7155-7161.

[31] Zhang C H, Cao M Y, Ma H Y, et al. Morphology-control strategy of the superhydrophobic poly(methyl methacrylate) surface for efficient bubble adhesion and wastewater remediation[J]. Advanced Functional Materials, 2017, 27(43): 1702020.

[32] Ma H Y, Cao M Y, Zhang C H, et al. Directional andcontinuous transport of gas bubbles on superaerophilic geometry-gradient surfaces in aqueous environments[J]. Advanced Functional Materials, 2018, 28(7): 1705091.

[33] Lee C, Kim C J. Underwater restoration and retention of gases on superhydrophobic surfaces for drag reduction[J]. Physical Review Letters, 2011, 106: 014502.

[34] Wu Y, Wei Q B, Cai M R, et al. Interfacial friction control[J]. Advanced Materials Interfaces, 2015, 2(2): 1400392.

[35] Zhang X, Liu H W, Huang X Z, et al. One-step femtosecond laser patterning of light-trapping structure on dye-sensitized solar cell photoelectrodes[J]. Journal of Materials Chemistry C, 2015, 3(14): 3336-3341.

[36] Jalil S A, Lai B. ElKabbash M, et al. Spectral absorption control of femtosecond laser-treated metals and application in solar-thermal devices[J]. Light: Science & Applications, 2020, 9: 14.

[37] 吴雪峰, 尹海亮, 李强. 飞秒激光加工碳纳米管薄膜试验研究[J]. 中国激光, 2019, 46(9): 0902002.

    Wu X F, Yin H L, Li Q. Femtosecond laser processing of carbon nanotubes film[J]. Chinese Journal of Lasers, 2019, 46(9): 0902002.

[38] 王子涵, 王宝续, 釜野勝, 等. 基于激光干涉烧蚀的硅表面微纳结构制备研究[J]. 激光与光电子学进展, 2019, 56(16): 163201.

    Wang Z H, Wang B X, Kamano M, et al. Fabrication of silicon micro/nanostructures based on laser interference ablation[J]. Laser & Optoelectronics Progress, 2019, 56(16): 163201.

[39] Yong J L, Chen F, Yang Q, et al. A review of femtosecond-laser-induced underwater superoleophobic surfaces[J]. Advanced Materials Interfaces, 2018, 5(7): 1701370.

[40] Yang S, Yin K, Wu J R, et al. Ultrafast nano-structuring of superwetting Ti foam with robust antifouling and stability towards efficient oil-in-water emulsion separation[J]. Nanoscale, 2019, 11(38): 17607-17614.

[41] Chu D K, Yin K, Dong X R, et al. Ablation enhancement by defocused irradiation assisted femtosecond laser fabrication of stainless alloy[J]. Chinese Optics Letters, 2018, 16(1): 011401.

[42] Yin K, Du H F, Dong X R, et al. A simple way to achieve bioinspired hybrid wettability surface with micro/nanopatterns for efficient fog collection[J]. Nanoscale, 2017, 9(38): 14620-14626.

[43] Yin K, Chu D K, Dong X R, et al. Femtosecond laser induced robust periodic nanoripple structured mesh for highly efficient oil-water separation[J]. Nanoscale, 2017, 9(37): 14229-14235.

[44] 龙江游, 范培迅, 龚鼎为, 等. 超快激光制备具有特殊浸润性的仿生表面[J]. 中国激光, 2016, 43(8): 0800001.

    Long J Y, Fan P X, Gong D W, et al. Ultrafast laser fabricated bio-inspired surfaces with special wettability[J]. Chinese Journal of Lasers, 2016, 43(8): 0800001.

[45] Chen F, Zhang D S, Yang Q, et al. Bioinspired wetting surface via laser microfabrication[J]. ACS Applied Materials & Interfaces, 2013, 5(15): 6777-6792.

[46] Yong J L, Chen F, Yang Q, et al. Femtosecond laser controlled wettability of solid surfaces[J]. Soft Matter, 2015, 11(46): 8897-8906.

[47] Huo J L, Yang Q, Chen F, et al. Underwater transparent miniature “mechanical hand” based on femtosecond laser-induced controllable oil-adhesive patterned glass for oil droplet manipulation[J]. Langmuir, 2017, 33(15): 3659-3665.

[48] Liu M J, Wang S T, Jiang L. Nature-inspired superwett ability systems[J]. Nature Reviews Materials, 2017, 2(7): 17036.

[49] 潘瑞, 钟敏霖. 超快激光制备超疏水超亲水表面及超疏水表面机械耐久性[J]. 科学通报, 2019, 64(12): 1268-1289.

    Pan R, Zhong ML. Fabrication of superwetting surfaces by ultrafast lasers and mechanical durability of superhydrophobic surfaces[J]. Chinese Science Bulletin, 2019, 64(12): 1268-1289.

[50] Yong J L, Chen F, Yang Q, et al. Superoleophobic surfaces[J]. Chemical Society Reviews, 2017, 46(14): 4168-4217.

[51] 雍佳乐, 杨青, 陈烽, 等. 飞秒激光仿生制备极端浸润性表面[J]. 科学通报, 2019, 64(12): 1213-1237.

    Yong J L, Yang Q, Chen F, et al. Femtosecond laser-induced superwetting surfaces[J]. Chinese Science Bulletin, 2019, 64(12): 1213-1237.

[52] Zhang P C, Wang S S, Wang S T, et al. Superwetting surfaces under different media: effects of surface topography on wettability[J]. Small, 2015, 11(16): 1939-1946.

[53] Yu C M, Zhang P P, Wang J M, et al. Superwettability of gas bubbles and its application: from bioinspiration to advanced materials[J]. Advanced Materials, 2017, 29(45): 1703053.

[54] Xue X Z, Wang R X, Lan L W, et al. Reliable manipulation of gas bubble size on superaerophilic cones in aqueous media[J]. ACS applied materials & interfaces, 2018, 10(5): 5099-5106.

[55] Ling W Y L, Lu G, Ng T W. Increased stability and size of a bubble on a superhydrophobic surface[J]. Langmuir, 2011, 27(7): 3233-3237.

[56] Zhang Y, Cai Z, Zhao Y, et al. Superaerophilic copper nanowires for efficient and switchable CO2 electroreduction[J]. Nanoscale Horizons, 2019, 4(2): 490-494.

[57] de Maleprade H, Clanet C, Quéré D. Spreading of bubbles after contacting the lower side of an aerophilic slide immersed in water[J]. Physical Review Letters, 2016, 117(9): 094501.

[58] Wang J P, Wu Y L, Zhang D G, et al. Preparation of superaerophilic copper mesh for underwater gas collection by combination of spraying technology and flame treatment[J]. Applied Physics A, 2020, 126(1): 24.

[59] Li Z, Cao C, Zhu Z, et al. Superaerophilic materials are surprising catalysts: wettability-induced excellent hydrogenation activity under ambient H2 pressure[J]. Advanced Materials Interfaces, 2018, 5(22): 1801259.

[60] Dorrer C, Rühe J. Superaerophobicity: repellence of air bubbles from submerged, surface-engineered silicon substrates[J]. Langmuir, 2012, 28(42): 14968-14973.

[61] George J E, Chidangil S, George S D. Recent progress infabricating superaerophobic and superaerophilic surfaces[J]. Advanced Materials Interfaces, 2017, 4(9): 1601088.

[62] Little D J, Ams M, Dekker P, et al. Femtosecond laser modification of fused silica: the effect of writing polarization on Si-O ring structure[J]. Optics Express, 2008, 16(24): 20029-20037.

[63] He S T, Yu J, Hu M L. Femtosecond laser high precision fabrication for novel applications[J]. Current Nanoscience, 2016, 12(6): 676-684.

[64] Li Y J, Zhang H C, Xu T H, et al. Under-water superaerophobic pine-shaped Pt nanoarray electrode for ultrahigh-performance hydrogen evolution[J]. Advanced Functional Materials, 2015, 25(11): 1737-1744.

[65] Yang H C, Hou J W, Wan L S, et al. Janus membranes with asymmetric wettability for fine bubble aeration[J]. Advanced Materials Interfaces, 2016, 3(9): 1500774.

[66] Chu D K, Sun X Y, Hu Y W, et al. Substrate-independent, switchable bubble wettability surfaces induced by ultrasonic treatment[J]. Soft Matter, 2019, 15(37): 7398-7403.

[67] Yang S, Yin K, Chu D K, et al. Femtosecond laser structuring of Janus foam: water spontaneous antigravity unidirectional penetration and pumping[J]. Applied Physics Letters, 2018, 113(20): 203701.

[68] Yin K, Dong X R, Zhang F, et al. Superamphiphobic miniature boat fabricated by laser micromachining[J]. Applied Physics Letters, 2017, 110(12): 121909.

[69] Wu J R, Yin K, Li M, et al. Under-oil self-driven and directional transport of water on a femtosecond laser-processed superhydrophilic geometry-gradient structure[J]. Nanoscale, 2020, 12(6): 4077-4084.

[70] Zhang C H, Zhang B, Ma H Y, et al. Bioinspired pressure-tolerant asymmetric slippery surface for continuous self-transport of gas bubbles in aqueous environment[J]. ACS Nano, 2018, 12(2): 2048-2055.

[71] Ma R, Wang J M, Yang Z J, et al. Bioinspired gas bubble spontaneous and directional transportation effects in an aqueous medium[J]. Advanced Materials, 2015, 27(14): 2384-2389.

[72] Geyer F, Schönecker C, Butt H J, et al. Enhancing CO2 capture using robust superomniphobic membranes[J]. Advanced Materials, 2017, 29(5): 1603524.

[73] Lu Z Y, Sun M, Xu T H, et al. Superaerophobic electrodes for direct hydrazine fuel cells[J]. Advanced Materials, 2015, 27(14): 2361-2366.

[74] Faber M S, Dziedzic R, Lukowski M A, et al. High-performance electrocatalysis using metallic cobalt pyrite (CoS2) micro- and nanostructures[J]. Journal of the American Chemical Society, 2014, 136(28): 10053-10061.

[75] Yang S, Yin K, Dong X R, et al. Lasers tructuring of underwater bubble-repellent surface[J]. Journal of Nanoscience and Nanotechnology, 2018, 18(12): 8381-8385.

[76] Jiao Y L, Lü X, Zhang Y Y, et al. Pitcher plant-bioinspired bubble slippery surface fabricated by femtosecond laser for buoyancy-driven bubble self-transport and efficient gas capture[J]. Nanoscale, 2019, 11(3): 1370-1378.

[77] Yong J L, Chen F, Fang Y, et al. Bioinspired design of underwater superaerophobic and superaerophilic surfaces by femtosecond laser ablation for anti- or capturing bubbles[J]. ACS Applied Materials & Interfaces, 2017, 9(45): 39863-39871.

[78] Yu C M, Cao M Y, Dong Z C, et al. Spontaneous and directional transportation of gas bubbles on superhydrophobic cones[J]. Advanced Functional Materials, 2016, 26(19): 3236-3243.

[79] Pei C T, Peng Y, Zhang Y, et al. An integrated Janus mesh: underwater bubble antibuoyancy unidirectional penetration[J]. ACS Nano, 2018, 12(6): 5489-5494.

[80] Zhu S W, Li J W, Cai S W, et al. Unidirectional transport and effective collection of underwater CO2 bubbles utilizing ultrafast-laser-ablated Janus foam[J]. ACS Applied Materials & Interfaces, 2020, 12(15): 18110-18115.

[81] Huang C, Guo Z G. The wettability of gas bubbles: from macro behavior to nano structures to applications[J]. Nanoscale, 2018, 10(42): 19659-19672.

[82] Zhan Z B. ElKabbash M, Cheng J L, et al. Highly floatable superhydrophobic metallic assembly for aquatic applications[J]. ACS Applied Materials & Interfaces, 2019, 11(51): 48512-48517.

[83] Hu Y L, Qiu W X, Zhang Y Y, et al. Channel-controlled Janus membrane fabricated by simultaneous laser ablation and nanoparticles deposition for underwater bubbles manipulation[J]. Applied Physics Letters, 2019, 114(17): 173701.

[84] Fu X L, Hou J W, Chen C, et al. Superhydrophobic and superaerophilic hierarchical Pt@MIL-101/PVDF composite for hydrogen water isotope exchange reactions[J]. Journal of Hazardous Materials, 2019, 380: 120904.

[85] Yu X X, Yu Z Y, Zhang X L, et al. “superaerophobic” nickel phosphide nanoarray catalyst for efficient hydrogen evolution at ultrahigh current densities[J]. Journal of the American Chemical Society, 2019, 141(18): 7537-7543.

[86] Gao A L, Fan H Q, Zhang G F, et al. Facile construction of gas diode membrane towards in situ gas consumption via coupling two chemical reactions[J]. Journal of Colloid and Interface Science, 2019, 557: 282-290.

[87] Ju G N, Cheng M J, Xiao M, et al. Smart transportation between three phases through a stimulus-responsive functionally cooperating device[J]. Advanced Materials, 2013, 25(21): 2915-2919.

[88] Liu H L, Zhang X Q, Wang S T, et al. Underwater thermoresponsive surface with switchable oil-wettability between superoleophobicity and superoleophilicity[J]. Small, 2015, 11(27): 3338-3342.

[90] Wang R, Hashimoto K, Fujishima A, et al. Light-induced amphiphilic surfaces[J]. Nature, 1997, 388(6641): 431-432.

[91] Liu K S, Cao M Y, Fujishima A, et al. Bio-inspired titanium dioxide materials with special wettability and their applications[J]. Chemical Reviews, 2014, 114(19): 10044-10094.

[92] Sun T L, Wang G J, Feng L, et al. Reversible switching between superhydrophilicity and superhydrophobicity[J]. Angewandte Chemie International Edition, 2004, 43(3): 357-360.

[93] Sawai Y, Nishimoto S, Kameshima Y, et al. Photoinduced underwater superoleophobicity of TiO2 thin films[J]. Langmuir, 2013, 29(23): 6784-6789.

[94] Liu Y, Lin Z Y, Lin W, et al. Reversible superhydrophobic-superhydrophilic transition of ZnO nanorod/epoxy composite films[J]. ACS Applied Materials & Interfaces, 2012, 4(8): 3959-3964.

[95] Xia F, Feng L, Wang S, et al. Dual-responsive surfaces that switch between superhydrophilicity and superhydrophobicity[J]. Advanced Materials, 2006, 18(4): 432-436.

[96] Huo J L, Yong J L, Chen F, et al. Air bubble control: trapped air-induced reversible transition between underwater superaerophilicity and superaerophobicity on the femtosecond laser-ablated superhydrophobic PTFE surfaces[J]. Advanced Materials Interfaces, 2019, 6(17): 1970106.

[97] Yong J L, Chen F, Huo J L, et al. Femtosecond laser induced underwater superaerophilic and superaerophobic PDMS sheets with through microholes for selective passage of air bubbles and further collection of underwater gas[J]. Nanoscale, 2018, 10(8): 3688-3696.

[98] Jiao Y L, Li C Z, Wu S Z, et al. Switchable underwater bubble wettability on laser-induced titanium multiscale micro-/nanostructures by vertically crossed scanning[J]. ACS Applied Materials & Interfaces, 2018, 10(19): 16867-16873.

[99] Jiao Y L, Li C Z, Lü X, et al. In situ tunable bubble wettability with fast response induced by solution surface tension[J]. Journal of Materials Chemistry A, 2018, 6(42): 20878-20886.

[100] Yong J L, Singh S C, Zhan Z B, et al. Substrate-independent, fast, and reversible switching between underwater superaerophobicity and aerophilicity on the femtosecond laser-induced superhydrophobic surfaces for selectively repelling or capturing bubbles in water[J]. ACS Applied Materials & Interfaces, 2019, 11(8): 8667-8675.

[101] Verschoof R A, Sun C, et al. Bubble drag reduction requires large bubbles[J]. Physical Review Letters, 2016, 117(10): 104502.

[102] Yu C M, Zhu X B, Li K, et al. Manipulating bubbles in aqueous environment via a lubricant-infused slippery surface[J]. Advanced Functional Materials, 2017, 27(29): 1701605.

[103] Chen X, Wu Y C, Su B, et al. Terminating marine methane bubbles by superhydrophobic sponges[J]. Advanced Materials, 2012, 24(43): 5884-5889.

[104] Yin K, Yang S, Dong X R, et al. Femtosecond laser fabrication of shape-gradient platform: underwater bubbles continuous self-driven and unidirectional transportation[J]. Applied Surface Science, 2019, 471: 999-1004.

[105] Duan J A, Dong X R, Yin K, et al. A hierarchical superaerophilic cone: robust spontaneous and directional transport of gas bubbles[J]. Applied Physics Letters, 2018, 113(20): 203704.

[106] Yin K, Yang S, Dong X R, et al. Robust laser-structured asymmetrical PTFE mesh for underwater directional transportation and continuous collection of gas bubbles[J]. Applied Physics Letters, 2018, 112(24): 243701.

[107] Yan S G, Ren F F, Li C Z, et al. Unidirectional self-transport of air bubble via a Janus membrane in aqueous environment[J]. Applied Physics Letters, 2018, 113(26): 261602.

[108] Chen C, Huang Z C, Shi L A, et al. Remote photothermal actuation of underwater bubble toward arbitrary direction on planar slippery Fe3O4 -doped surfaces[J]. Advanced Functional Materials, 2019, 29(40): 1904766.

吴志鹏, 银恺, 吴俊瑞, 杨帅, 朱卓. 飞秒激光微纳制造水下气体浸润性表面[J]. 激光与光电子学进展, 2020, 57(11): 111418. Zhipeng Wu, Kai Yin, Junrui Wu, Shuai Yang, Zhuo Zhu. Femtosecond Laser Micro-Nano Fabrication of Underwater Gas Wettable Surface[J]. Laser & Optoelectronics Progress, 2020, 57(11): 111418.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!