激光与光电子学进展, 2020, 57 (11): 111418, 网络出版: 2020-06-02   

飞秒激光微纳制造水下气体浸润性表面 下载: 1831次特邀综述

Femtosecond Laser Micro-Nano Fabrication of Underwater Gas Wettable Surface
作者单位
1 中南大学物理与电子学院超微结构与超快过程湖南省重点实验室, 湖南 长沙 410083
2 中南大学高性能复杂制造国家重点实验室, 湖南 长沙 410083
引用该论文

吴志鹏, 银恺, 吴俊瑞, 杨帅, 朱卓. 飞秒激光微纳制造水下气体浸润性表面[J]. 激光与光电子学进展, 2020, 57(11): 111418.

Zhipeng Wu, Kai Yin, Junrui Wu, Shuai Yang, Zhuo Zhu. Femtosecond Laser Micro-Nano Fabrication of Underwater Gas Wettable Surface[J]. Laser & Optoelectronics Progress, 2020, 57(11): 111418.

参考文献

[1] Zhang Y L, Xia H, Kim E, et al. Recent developments in superhydrophobic surfaces with unique structural and functional properties[J]. Soft Matter, 2012, 8(44): 11217-11231.

[2] Darmanin T, Guittard F. Recent advances in the potential applications of bioinspired superhydrophobic materials[J]. Journal of Materials Chemistry A, 2014, 2(39): 16319-16359.

[3] Liu K S, Yao X, Jiang L. Recent developments in bio-inspired special wettability[J]. Chemical Society Reviews, 2010, 39(8): 3240-3255.

[4] Xia F, Jiang L. Bio-inspired, smart, multiscale interfacial materials[J]. Advanced Materials, 2008, 20(15): 2842-2858.

[5] Liu X J, Liang Y M, Zhou F, et al. Extreme wettability and tunable adhesion: biomimicking beyond nature?[J]. Soft Matter, 2012, 8(7): 2070-2086.

[6] Chang B S, Zhang M X, Qing G Y, et al. Dynamic biointerfaces: from recognition to function[J]. Small, 2015, 11(9/10): 1097-1112.

[7] Zhang X X, Wang L, Levänen E. Superhydrophobic surfaces for the reduction of bacterial adhesion[J]. RSC Advances, 2013, 3(30): 12003-12020.

[8] Zhang Y B, Chen Y, Shi L, et al. Recent progress of double-structural and functional materials with special wettability[J]. Journal of Materials Chemistry, 2012, 22(3): 799-815.

[9] Xue Z X, Cao Y Z, Liu N, et al. Special wettable materials for oil/water separation[J]. Journal of Materials Chemistry A, 2014, 2(8): 2445-2460.

[10] 张径舟, 陈烽, 雍佳乐, 等. 飞秒激光诱导仿生超疏水材料表面的研究进展[J]. 激光与光电子学进展, 2018, 55(11): 110001.

    Zhang J Z, Chen F, Yong J L, et al. Research progress on bioinspired superhydrophobic surface induced by femtosecond laser[J]. Laser & Optoelectronics Progress, 2018, 55(11): 110001.

[11] Ternes T A, Meisenheimer M. McDowell D, et al. Removal of pharmaceuticals during drinking water treatment[J]. Environmental Science & Technology, 2002, 36(17): 3855-3863.

[12] Donne S W, Evans G M. Hydrogen bubble flotation of silica[J]. Advanced Powder Technology, 2010, 21(4): 412-418.

[13] Lu Z Y, Zhu W, Yu X Y, et al. Ultrahigh hydrogen evolution performance of under-water “superaerophobic” Mo S2Nanostructured electrodes[J]. Advanced Materials, 2014, 26(17): 2683-2687.

[14] Siddiqui M S, Amy G L, Murphy B D. Ozone enhanced removal of natural organic matter from drinking water sources[J]. Water Research, 1997, 31(12): 3098-3106.

[15] Bonn D, Eggers J, Indekeu J, et al. Wetting and spreading[J]. Reviews of Modern Physics, 2009, 81(2): 739-805.

[16] Kibsgaard J, Chen Z B, Reinecke B N, et al. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis[J]. Nature Materials, 2012, 11(11): 963-969.

[17] Xu W W, Lu Z Y, Sun X M, et al. Superwetting electrodes for gas-involving electrocatalysis[J]. Accounts of Chemical Research, 2018, 51(7): 1590-1598.

[18] Wang S K, Tseng F, Yeh T K, et al. Electrocatalytic properties improvement on carbon-nanotubes coated reaction surface for micro-DMFC[J]. Journal of Power Sources, 2007, 167(2): 413-419.

[19] da Silva L M, Franco D V, de Faria L A, et al. Surface, kinetics and electrocatalytic properties of Ti/( IrO2 + Ta2O5) electrodes, prepared using controlled cooling rate, for ozone production[J]. Electrochimica Acta, 2004, 49(22/23): 3977-3988.

[20] Handa-Corrigan A, Emery A N, Spier R E. Effect of gas: liquid interfaces on the growth of suspended mammalian cells: mechanisms of cell damage by bubbles[J]. Enzyme and Microbial Technology, 1989, 11(4): 230-235.

[21] Wu J Y, Ruan Q. Peter Lam H Y. Effects of surface-active medium additives on insect cell surface hydrophobicity relating to cell protection against bubble damage[J]. Enzyme and Microbial Technology, 1997, 21(5): 341-348.

[22] Yap R K L, Whittaker M, Diao M, et al. Hydrophobically-associating cationic polymers as micro-bubble surface modifiers indissolved air flotation for cyanobacteria cell separation[J]. Water Research, 2014, 61: 253-262.

[23] Ceccio S L. Friction drag reduction of external flows with bubble and gas injection[J]. Annual Review of Fluid Mechanics, 2010, 42(1): 183-203.

[24] Zhang S S, Ouyang X, Li J, et al. Underwater drag-reducing effect of superhydrophobic submarine model[J]. Langmuir, 2015, 31(1): 587-593.

[25] Zhao D Y, Huang Z P, Wang M J, et al. Vacuum casting replication of micro-riblets on shark skin for drag-reducing applications[J]. Journal of Materials Processing Technology, 2012, 212(1): 198-202.

[26] Chen C, Shi L A, Huang Z C, et al. Microhole-arrayed PDMS with controllable wettability gradient by one-step femtosecond laser drilling for ultrafast underwater bubble unidirectional self-transport[J]. Advanced Materials Interfaces, 2019, 6(12): 1900297.

[27] Lü X D, Jiao Y L, Wu S Z, et al. Anisotropic sliding of underwater bubbles on microgrooved slippery surfaces by one-step femtosecond laser scanning[J]. ACS Applied Materials & Interfaces, 2019, 11(22): 20574-20580.

[28] Ragesh P, Anand Ganesh V, Nair S V, et al. A review on ‘self-cleaning and multifunctional materials’[J]. Journal of Materials Chemistry A, 2014, 2(36): 14773-14797.

[29] Wang X, Wang Z B, Heng L P, et al. Stableomniphobic anisotropic covalently grafted slippery surfaces for directional transportation of drops and bubbles[J]. Advanced Functional Materials, 2020, 30(1): 1902686.

[30] Lu Z Y, Xu W W, Ma J, et al. Superaerophilic carbon-nanotube-array electrode for high-performance oxygen reduction reaction[J]. Advanced Materials, 2016, 28(33): 7155-7161.

[31] Zhang C H, Cao M Y, Ma H Y, et al. Morphology-control strategy of the superhydrophobic poly(methyl methacrylate) surface for efficient bubble adhesion and wastewater remediation[J]. Advanced Functional Materials, 2017, 27(43): 1702020.

[32] Ma H Y, Cao M Y, Zhang C H, et al. Directional andcontinuous transport of gas bubbles on superaerophilic geometry-gradient surfaces in aqueous environments[J]. Advanced Functional Materials, 2018, 28(7): 1705091.

[33] Lee C, Kim C J. Underwater restoration and retention of gases on superhydrophobic surfaces for drag reduction[J]. Physical Review Letters, 2011, 106: 014502.

[34] Wu Y, Wei Q B, Cai M R, et al. Interfacial friction control[J]. Advanced Materials Interfaces, 2015, 2(2): 1400392.

[35] Zhang X, Liu H W, Huang X Z, et al. One-step femtosecond laser patterning of light-trapping structure on dye-sensitized solar cell photoelectrodes[J]. Journal of Materials Chemistry C, 2015, 3(14): 3336-3341.

[36] Jalil S A, Lai B. ElKabbash M, et al. Spectral absorption control of femtosecond laser-treated metals and application in solar-thermal devices[J]. Light: Science & Applications, 2020, 9: 14.

[37] 吴雪峰, 尹海亮, 李强. 飞秒激光加工碳纳米管薄膜试验研究[J]. 中国激光, 2019, 46(9): 0902002.

    Wu X F, Yin H L, Li Q. Femtosecond laser processing of carbon nanotubes film[J]. Chinese Journal of Lasers, 2019, 46(9): 0902002.

[38] 王子涵, 王宝续, 釜野勝, 等. 基于激光干涉烧蚀的硅表面微纳结构制备研究[J]. 激光与光电子学进展, 2019, 56(16): 163201.

    Wang Z H, Wang B X, Kamano M, et al. Fabrication of silicon micro/nanostructures based on laser interference ablation[J]. Laser & Optoelectronics Progress, 2019, 56(16): 163201.

[39] Yong J L, Chen F, Yang Q, et al. A review of femtosecond-laser-induced underwater superoleophobic surfaces[J]. Advanced Materials Interfaces, 2018, 5(7): 1701370.

[40] Yang S, Yin K, Wu J R, et al. Ultrafast nano-structuring of superwetting Ti foam with robust antifouling and stability towards efficient oil-in-water emulsion separation[J]. Nanoscale, 2019, 11(38): 17607-17614.

[41] Chu D K, Yin K, Dong X R, et al. Ablation enhancement by defocused irradiation assisted femtosecond laser fabrication of stainless alloy[J]. Chinese Optics Letters, 2018, 16(1): 011401.

[42] Yin K, Du H F, Dong X R, et al. A simple way to achieve bioinspired hybrid wettability surface with micro/nanopatterns for efficient fog collection[J]. Nanoscale, 2017, 9(38): 14620-14626.

[43] Yin K, Chu D K, Dong X R, et al. Femtosecond laser induced robust periodic nanoripple structured mesh for highly efficient oil-water separation[J]. Nanoscale, 2017, 9(37): 14229-14235.

[44] 龙江游, 范培迅, 龚鼎为, 等. 超快激光制备具有特殊浸润性的仿生表面[J]. 中国激光, 2016, 43(8): 0800001.

    Long J Y, Fan P X, Gong D W, et al. Ultrafast laser fabricated bio-inspired surfaces with special wettability[J]. Chinese Journal of Lasers, 2016, 43(8): 0800001.

[45] Chen F, Zhang D S, Yang Q, et al. Bioinspired wetting surface via laser microfabrication[J]. ACS Applied Materials & Interfaces, 2013, 5(15): 6777-6792.

[46] Yong J L, Chen F, Yang Q, et al. Femtosecond laser controlled wettability of solid surfaces[J]. Soft Matter, 2015, 11(46): 8897-8906.

[47] Huo J L, Yang Q, Chen F, et al. Underwater transparent miniature “mechanical hand” based on femtosecond laser-induced controllable oil-adhesive patterned glass for oil droplet manipulation[J]. Langmuir, 2017, 33(15): 3659-3665.

[48] Liu M J, Wang S T, Jiang L. Nature-inspired superwett ability systems[J]. Nature Reviews Materials, 2017, 2(7): 17036.

[49] 潘瑞, 钟敏霖. 超快激光制备超疏水超亲水表面及超疏水表面机械耐久性[J]. 科学通报, 2019, 64(12): 1268-1289.

    Pan R, Zhong ML. Fabrication of superwetting surfaces by ultrafast lasers and mechanical durability of superhydrophobic surfaces[J]. Chinese Science Bulletin, 2019, 64(12): 1268-1289.

[50] Yong J L, Chen F, Yang Q, et al. Superoleophobic surfaces[J]. Chemical Society Reviews, 2017, 46(14): 4168-4217.

[51] 雍佳乐, 杨青, 陈烽, 等. 飞秒激光仿生制备极端浸润性表面[J]. 科学通报, 2019, 64(12): 1213-1237.

    Yong J L, Yang Q, Chen F, et al. Femtosecond laser-induced superwetting surfaces[J]. Chinese Science Bulletin, 2019, 64(12): 1213-1237.

[52] Zhang P C, Wang S S, Wang S T, et al. Superwetting surfaces under different media: effects of surface topography on wettability[J]. Small, 2015, 11(16): 1939-1946.

[53] Yu C M, Zhang P P, Wang J M, et al. Superwettability of gas bubbles and its application: from bioinspiration to advanced materials[J]. Advanced Materials, 2017, 29(45): 1703053.

[54] Xue X Z, Wang R X, Lan L W, et al. Reliable manipulation of gas bubble size on superaerophilic cones in aqueous media[J]. ACS applied materials & interfaces, 2018, 10(5): 5099-5106.

[55] Ling W Y L, Lu G, Ng T W. Increased stability and size of a bubble on a superhydrophobic surface[J]. Langmuir, 2011, 27(7): 3233-3237.

[56] Zhang Y, Cai Z, Zhao Y, et al. Superaerophilic copper nanowires for efficient and switchable CO2 electroreduction[J]. Nanoscale Horizons, 2019, 4(2): 490-494.

[57] de Maleprade H, Clanet C, Quéré D. Spreading of bubbles after contacting the lower side of an aerophilic slide immersed in water[J]. Physical Review Letters, 2016, 117(9): 094501.

[58] Wang J P, Wu Y L, Zhang D G, et al. Preparation of superaerophilic copper mesh for underwater gas collection by combination of spraying technology and flame treatment[J]. Applied Physics A, 2020, 126(1): 24.

[59] Li Z, Cao C, Zhu Z, et al. Superaerophilic materials are surprising catalysts: wettability-induced excellent hydrogenation activity under ambient H2 pressure[J]. Advanced Materials Interfaces, 2018, 5(22): 1801259.

[60] Dorrer C, Rühe J. Superaerophobicity: repellence of air bubbles from submerged, surface-engineered silicon substrates[J]. Langmuir, 2012, 28(42): 14968-14973.

[61] George J E, Chidangil S, George S D. Recent progress infabricating superaerophobic and superaerophilic surfaces[J]. Advanced Materials Interfaces, 2017, 4(9): 1601088.

[62] Little D J, Ams M, Dekker P, et al. Femtosecond laser modification of fused silica: the effect of writing polarization on Si-O ring structure[J]. Optics Express, 2008, 16(24): 20029-20037.

[63] He S T, Yu J, Hu M L. Femtosecond laser high precision fabrication for novel applications[J]. Current Nanoscience, 2016, 12(6): 676-684.

[64] Li Y J, Zhang H C, Xu T H, et al. Under-water superaerophobic pine-shaped Pt nanoarray electrode for ultrahigh-performance hydrogen evolution[J]. Advanced Functional Materials, 2015, 25(11): 1737-1744.

[65] Yang H C, Hou J W, Wan L S, et al. Janus membranes with asymmetric wettability for fine bubble aeration[J]. Advanced Materials Interfaces, 2016, 3(9): 1500774.

[66] Chu D K, Sun X Y, Hu Y W, et al. Substrate-independent, switchable bubble wettability surfaces induced by ultrasonic treatment[J]. Soft Matter, 2019, 15(37): 7398-7403.

[67] Yang S, Yin K, Chu D K, et al. Femtosecond laser structuring of Janus foam: water spontaneous antigravity unidirectional penetration and pumping[J]. Applied Physics Letters, 2018, 113(20): 203701.

[68] Yin K, Dong X R, Zhang F, et al. Superamphiphobic miniature boat fabricated by laser micromachining[J]. Applied Physics Letters, 2017, 110(12): 121909.

[69] Wu J R, Yin K, Li M, et al. Under-oil self-driven and directional transport of water on a femtosecond laser-processed superhydrophilic geometry-gradient structure[J]. Nanoscale, 2020, 12(6): 4077-4084.

[70] Zhang C H, Zhang B, Ma H Y, et al. Bioinspired pressure-tolerant asymmetric slippery surface for continuous self-transport of gas bubbles in aqueous environment[J]. ACS Nano, 2018, 12(2): 2048-2055.

[71] Ma R, Wang J M, Yang Z J, et al. Bioinspired gas bubble spontaneous and directional transportation effects in an aqueous medium[J]. Advanced Materials, 2015, 27(14): 2384-2389.

[72] Geyer F, Schönecker C, Butt H J, et al. Enhancing CO2 capture using robust superomniphobic membranes[J]. Advanced Materials, 2017, 29(5): 1603524.

[73] Lu Z Y, Sun M, Xu T H, et al. Superaerophobic electrodes for direct hydrazine fuel cells[J]. Advanced Materials, 2015, 27(14): 2361-2366.

[74] Faber M S, Dziedzic R, Lukowski M A, et al. High-performance electrocatalysis using metallic cobalt pyrite (CoS2) micro- and nanostructures[J]. Journal of the American Chemical Society, 2014, 136(28): 10053-10061.

[75] Yang S, Yin K, Dong X R, et al. Lasers tructuring of underwater bubble-repellent surface[J]. Journal of Nanoscience and Nanotechnology, 2018, 18(12): 8381-8385.

[76] Jiao Y L, Lü X, Zhang Y Y, et al. Pitcher plant-bioinspired bubble slippery surface fabricated by femtosecond laser for buoyancy-driven bubble self-transport and efficient gas capture[J]. Nanoscale, 2019, 11(3): 1370-1378.

[77] Yong J L, Chen F, Fang Y, et al. Bioinspired design of underwater superaerophobic and superaerophilic surfaces by femtosecond laser ablation for anti- or capturing bubbles[J]. ACS Applied Materials & Interfaces, 2017, 9(45): 39863-39871.

[78] Yu C M, Cao M Y, Dong Z C, et al. Spontaneous and directional transportation of gas bubbles on superhydrophobic cones[J]. Advanced Functional Materials, 2016, 26(19): 3236-3243.

[79] Pei C T, Peng Y, Zhang Y, et al. An integrated Janus mesh: underwater bubble antibuoyancy unidirectional penetration[J]. ACS Nano, 2018, 12(6): 5489-5494.

[80] Zhu S W, Li J W, Cai S W, et al. Unidirectional transport and effective collection of underwater CO2 bubbles utilizing ultrafast-laser-ablated Janus foam[J]. ACS Applied Materials & Interfaces, 2020, 12(15): 18110-18115.

[81] Huang C, Guo Z G. The wettability of gas bubbles: from macro behavior to nano structures to applications[J]. Nanoscale, 2018, 10(42): 19659-19672.

[82] Zhan Z B. ElKabbash M, Cheng J L, et al. Highly floatable superhydrophobic metallic assembly for aquatic applications[J]. ACS Applied Materials & Interfaces, 2019, 11(51): 48512-48517.

[83] Hu Y L, Qiu W X, Zhang Y Y, et al. Channel-controlled Janus membrane fabricated by simultaneous laser ablation and nanoparticles deposition for underwater bubbles manipulation[J]. Applied Physics Letters, 2019, 114(17): 173701.

[84] Fu X L, Hou J W, Chen C, et al. Superhydrophobic and superaerophilic hierarchical Pt@MIL-101/PVDF composite for hydrogen water isotope exchange reactions[J]. Journal of Hazardous Materials, 2019, 380: 120904.

[85] Yu X X, Yu Z Y, Zhang X L, et al. “superaerophobic” nickel phosphide nanoarray catalyst for efficient hydrogen evolution at ultrahigh current densities[J]. Journal of the American Chemical Society, 2019, 141(18): 7537-7543.

[86] Gao A L, Fan H Q, Zhang G F, et al. Facile construction of gas diode membrane towards in situ gas consumption via coupling two chemical reactions[J]. Journal of Colloid and Interface Science, 2019, 557: 282-290.

[87] Ju G N, Cheng M J, Xiao M, et al. Smart transportation between three phases through a stimulus-responsive functionally cooperating device[J]. Advanced Materials, 2013, 25(21): 2915-2919.

[88] Liu H L, Zhang X Q, Wang S T, et al. Underwater thermoresponsive surface with switchable oil-wettability between superoleophobicity and superoleophilicity[J]. Small, 2015, 11(27): 3338-3342.

[90] Wang R, Hashimoto K, Fujishima A, et al. Light-induced amphiphilic surfaces[J]. Nature, 1997, 388(6641): 431-432.

[91] Liu K S, Cao M Y, Fujishima A, et al. Bio-inspired titanium dioxide materials with special wettability and their applications[J]. Chemical Reviews, 2014, 114(19): 10044-10094.

[92] Sun T L, Wang G J, Feng L, et al. Reversible switching between superhydrophilicity and superhydrophobicity[J]. Angewandte Chemie International Edition, 2004, 43(3): 357-360.

[93] Sawai Y, Nishimoto S, Kameshima Y, et al. Photoinduced underwater superoleophobicity of TiO2 thin films[J]. Langmuir, 2013, 29(23): 6784-6789.

[94] Liu Y, Lin Z Y, Lin W, et al. Reversible superhydrophobic-superhydrophilic transition of ZnO nanorod/epoxy composite films[J]. ACS Applied Materials & Interfaces, 2012, 4(8): 3959-3964.

[95] Xia F, Feng L, Wang S, et al. Dual-responsive surfaces that switch between superhydrophilicity and superhydrophobicity[J]. Advanced Materials, 2006, 18(4): 432-436.

[96] Huo J L, Yong J L, Chen F, et al. Air bubble control: trapped air-induced reversible transition between underwater superaerophilicity and superaerophobicity on the femtosecond laser-ablated superhydrophobic PTFE surfaces[J]. Advanced Materials Interfaces, 2019, 6(17): 1970106.

[97] Yong J L, Chen F, Huo J L, et al. Femtosecond laser induced underwater superaerophilic and superaerophobic PDMS sheets with through microholes for selective passage of air bubbles and further collection of underwater gas[J]. Nanoscale, 2018, 10(8): 3688-3696.

[98] Jiao Y L, Li C Z, Wu S Z, et al. Switchable underwater bubble wettability on laser-induced titanium multiscale micro-/nanostructures by vertically crossed scanning[J]. ACS Applied Materials & Interfaces, 2018, 10(19): 16867-16873.

[99] Jiao Y L, Li C Z, Lü X, et al. In situ tunable bubble wettability with fast response induced by solution surface tension[J]. Journal of Materials Chemistry A, 2018, 6(42): 20878-20886.

[100] Yong J L, Singh S C, Zhan Z B, et al. Substrate-independent, fast, and reversible switching between underwater superaerophobicity and aerophilicity on the femtosecond laser-induced superhydrophobic surfaces for selectively repelling or capturing bubbles in water[J]. ACS Applied Materials & Interfaces, 2019, 11(8): 8667-8675.

[101] Verschoof R A, Sun C, et al. Bubble drag reduction requires large bubbles[J]. Physical Review Letters, 2016, 117(10): 104502.

[102] Yu C M, Zhu X B, Li K, et al. Manipulating bubbles in aqueous environment via a lubricant-infused slippery surface[J]. Advanced Functional Materials, 2017, 27(29): 1701605.

[103] Chen X, Wu Y C, Su B, et al. Terminating marine methane bubbles by superhydrophobic sponges[J]. Advanced Materials, 2012, 24(43): 5884-5889.

[104] Yin K, Yang S, Dong X R, et al. Femtosecond laser fabrication of shape-gradient platform: underwater bubbles continuous self-driven and unidirectional transportation[J]. Applied Surface Science, 2019, 471: 999-1004.

[105] Duan J A, Dong X R, Yin K, et al. A hierarchical superaerophilic cone: robust spontaneous and directional transport of gas bubbles[J]. Applied Physics Letters, 2018, 113(20): 203704.

[106] Yin K, Yang S, Dong X R, et al. Robust laser-structured asymmetrical PTFE mesh for underwater directional transportation and continuous collection of gas bubbles[J]. Applied Physics Letters, 2018, 112(24): 243701.

[107] Yan S G, Ren F F, Li C Z, et al. Unidirectional self-transport of air bubble via a Janus membrane in aqueous environment[J]. Applied Physics Letters, 2018, 113(26): 261602.

[108] Chen C, Huang Z C, Shi L A, et al. Remote photothermal actuation of underwater bubble toward arbitrary direction on planar slippery Fe3O4 -doped surfaces[J]. Advanced Functional Materials, 2019, 29(40): 1904766.

吴志鹏, 银恺, 吴俊瑞, 杨帅, 朱卓. 飞秒激光微纳制造水下气体浸润性表面[J]. 激光与光电子学进展, 2020, 57(11): 111418. Zhipeng Wu, Kai Yin, Junrui Wu, Shuai Yang, Zhuo Zhu. Femtosecond Laser Micro-Nano Fabrication of Underwater Gas Wettable Surface[J]. Laser & Optoelectronics Progress, 2020, 57(11): 111418.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!