作者单位
摘要
天津大学精密仪器与光电子工程学院光电信息技术教育部重点实验室,天津 300072
提出一种应用于光学相干层析成像(OCT)的色散补偿方法,目的是抑制点扩散函数的轴向展宽并提高系统的信噪比。基于信号空域脉冲随色散的退化性质,构建出信号空域脉宽平方对二阶色散平方的线性方程组,然后将色散增量引入原始信号得到新的信号,并代入方程组即可求解出原始信号的二阶色散,进一步构建补偿相位对原始信号进行色散校正。将该方法应用在点扩散函数修正和生物组织图像的色散补偿中,实验结果表明:点扩散函数的峰值信噪比提高5.11 dB,在效果相近的情况下,所提方法比迭代法快5倍,比分数阶傅里叶变换(FrFT)法快50倍。校正后图像的轴向分辨能力和对比度得到提高,生物样品的结构特征更加清晰。
光学相干层析成像 色散补偿 二阶色散 空域脉冲宽度 
光学学报
2023, 43(23): 2310001
Yanqing Deng 1,2Dongning Yue 1,2Mufei Luo 1,2Xu Zhao 1,2[ ... ]Jie Zhang 1,2
Author Affiliations
Abstract
1 Key Laboratory for Laser Plasmas (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China
2 Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, Shanghai, China
The influence of second-order dispersion (SOD) on stimulated Raman scattering (SRS) in the interaction of an ultrashort intense laser with plasma was investigated. More significant backward SRS was observed with the increase of the absolute value of SOD ($\mid \kern-1pt\!{\psi}_2\!\kern-1pt\mid$). The integrated intensity of the scattered light is positively correlated to the driver laser pulse duration. Accompanied by the side SRS, filaments with different angles along the laser propagation direction were observed in the transverse shadowgraph. A model incorporating Landau damping and above-threshold ionization was developed to explain the SOD-dependent angular distribution of the filaments.
second-order dispersion stimulated Raman scattering ultrashort intense laser 
High Power Laser Science and Engineering
2022, 10(6): 06000e39
Author Affiliations
Abstract
iXblue, 34 rue de la Croix de Fer, 78100 Saint-Germain-en-Laye, France
Dispersion of light waves is well known, but the subject deserves some comments. Certain classical equations do not fully respect causality; as an example, group velocity vg is usually given as the first derivative of the angular frequency ω with respect to the angular spatial frequency km (or wavenumber) in the medium, whereas it is km that depends on ω. This paper also emphasizes the use of phase index n and group index ng, as inverse of their respective velocities, normalized to 1/c, the inverse of free-space light velocity. This clarifies the understanding of dispersion equations: group dispersion parameter D is related to the first derivative of ng with respect to wavelength λ, whilst group velocity dispersion GVD is also related to the first derivative of ng, but now with respect to angular frequency ω. One notices that the term second order dispersion does not have the same meaning with λ, or with ω. In addition, two original and amusing geometrical constructions are proposed; they simply derive group index ng from phase index n with a tangent, which helps to visualize their relationship. This applies to bulk materials, as well as to optical fibers and waveguides, and this can be extended to birefringence and polarization mode dispersion in polarization-maintaining fibers or birefringent waveguides.Dispersion of light waves is well known, but the subject deserves some comments. Certain classical equations do not fully respect causality; as an example, group velocity vg is usually given as the first derivative of the angular frequency ω with respect to the angular spatial frequency km (or wavenumber) in the medium, whereas it is km that depends on ω. This paper also emphasizes the use of phase index n and group index ng, as inverse of their respective velocities, normalized to 1/c, the inverse of free-space light velocity. This clarifies the understanding of dispersion equations: group dispersion parameter D is related to the first derivative of ng with respect to wavelength λ, whilst group velocity dispersion GVD is also related to the first derivative of ng, but now with respect to angular frequency ω. One notices that the term second order dispersion does not have the same meaning with λ, or with ω. In addition, two original and amusing geometrical constructions are proposed; they simply derive group index ng from phase index n with a tangent, which helps to visualize their relationship. This applies to bulk materials, as well as to optical fibers and waveguides, and this can be extended to birefringence and polarization mode dispersion in polarization-maintaining fibers or birefringent waveguides.
Birefringence Chromatic dispersion Dispersion Effective index First-order dispersion Group birefringence Group index Group velocity dispersion Index of refraction Polarization mode dispersion Refractive index Second-order dispersion 
Journal of the European Optical Society-Rapid Publications
2022, 18(1): 2022001
作者单位
摘要
西安邮电大学 电子工程学院, 陕西 西安 710121
提出了一种基于硅锗(Ge-on-Si,GOS)的新型亚微米光波导,通过调节二阶色散对此波导的结构进行了优化设计,研究了其在波长为3~6 μm间的连续光波长转换性能.数值结果表明,在脊宽2.8 μm、脊高1.6 μm,平板厚度0.48 μm的优化结构下,当泵浦光波长在靠近二阶零色散点的负色散波长区时可以实现高转换效率宽带中红外波长转换,3 dB转换带宽可达到1664 nm,在0.05 GW/cm2的泵浦光功率密度下,最大转换效率可达到-2.479 dB.该波导在中红外波段具有波长转换带宽大、转换效率高的优点,在未来空间光子网络与通信方面具有潜在的应用前景.
GOS脊型波导 中红外 二阶色散 四波混频 波长转换 Ge-on-Si(GOS) ridge waveguide mid infrared second-order dispersion four-wave mixing wavelength conversion 
红外与毫米波学报
2016, 35(2): 250
作者单位
摘要
合肥工业大学仪器科学与光电工程学院, 安徽 合肥 230009
提出基于频域分析的色散补偿方法,对光学相干显微镜的干涉信号进行快速傅里叶变换,得到频率幅值极大值对应的平均波数,将提取的解包裹后的相位以平均波数为中心做多项式拟合,得到二阶色散系数。实验中,通过在参考臂中插入不同厚度的色散介质来引入两个干涉臂色散介质的光程差,并求得相应的二阶色散系数。通过最小二乘线性拟合,证实了二阶色散系数和色散介质的相对厚度具有很好的线性关系。根据该线性关系,可以在参考臂中插入适当厚度的色散介质来完全补偿干涉系统的二阶色散。
显微 光学相干显微镜 色散补偿 频域分析 快速傅里叶变换 二阶色散 
中国激光
2012, 39(1): 0116003
作者单位
摘要
宜春学院物理科学与工程技术学院, 江西 宜春 336000
用龙格-库塔算法对描述超高斯脉冲在光纤中传输的微分方程组进行了数值求解,数 值结果表明归一化二阶色 散系数的大小合适且初始啁啾较小时脉冲的脉宽和频率啁啾随距离振荡演化,脉冲的频率和相位则出现随传输距离增 大而增大的抖动。求出了高斯脉冲的锐度因子为不同值(小于等于7) 能使超高斯脉冲在光纤中持续保形传输的归一 化二阶色散系数和初始啁啾大小条件(小于), 当二阶色散系数太大或太小或初始啁啾太大时脉冲在传输过程中 各重要参量都会严重偏离它们的初始值。
导波与纤维光学 保形传输条件 归一化二阶色散系数 龙格-库塔算法 waveguide and fiber optics condition of conformal transmission normalized coefficient of second-order dispersion Runge-Kutta algorithm 
量子电子学报
2011, 28(3): 380
作者单位
摘要
南京理工大学 电光学院光学工程, 南京 210094
为了提取生物组织的色散信息,提出了一种基于Fourier变换以及多项式拟合的方法.该方法通过对光学相干层析术的干涉包络进行Fourier变换,再将得到的相位谱进行多项式拟合以实现色散信息的提取.通过数值模拟及相关实验验证了该方法的可行性.本文的分析结果不但有助于实现动态的色散补偿,而且可以用于区分不同的生物组织,以及同一生物组织的不同生理状态.
医用光学与生物技术 光学相干层析成像 色散提取 Fourier变换 二阶色散 Medical optics and biotechnology Optical coherence tomography Dispersion extraction Fourier transforms Second order dispersion 
光子学报
2009, 38(10): 2598
作者单位
摘要
北京交通大学光波技术研究所, 北京 100044
提出了一种测量血糖浓度的新方法――二次色散法,此方法采用低相干干涉仪来测量时间相干干涉信号,通过傅里叶变换和多项式拟合获得二次色散。初步测量了三种不同浓度的糖溶液在0.55 μm到0.8 μm之间的二次色散,实验结果发现随着血糖浓度的增加,二次色散也随之增加。研究证明该方法是一种潜在的无接触、无伤害在线探测人体血糖浓度的方法。为设计一种非接触、无伤害在线探测人体血糖浓度的光学医疗仪器奠定基础。最后讨论了采用本方法尚需改进的问题和进一步的工作。
应用光学 医学信息处理 二次色散 低相干干涉仪 血糖浓度 
光学学报
2004, 24(10): 1297
作者单位
摘要
华南师范大学量子电子学研究所,广州,510631
对1550 nm波长附近具有不同色散特性的光纤产生超连续谱进行了详细的计算和分析。结果表明,在反常色散区和零色散区,由于内脉冲拉曼散射效应和三阶色散效应的影响,不能产生平坦、宽带的超连续谱。而在正常色散区,可以产生平坦光滑的超连续谱。进一步研究表明,具有较小正常色散的色散平坦光纤对于产生平坦、宽带的超连续谱极为有效。通过增强脉冲抽运功率,可以得到谱强起伏小于10 dB、带宽达300nm以上的平坦超宽超连续谱。
光纤光学 超连续谱产生 二阶色散 三阶色散 色散位移光纤 色散平坦光纤 
光学学报
2003, 23(3): 297
作者单位
摘要
南京邮电学院光信息,技术系,南京,210003
给出了含三阶色散项的强色散控制准线性系统传输方程,分析了三阶色散对该系统的影响特性,并采用数值仿真比较了三阶色散对准线性系统与色散控制孤子系统的影响,指出了三阶色散利、偿的必要性和补偿的精度要求.
色散控制准线性 色散控制孤子 三阶色散 二阶色散 dispersion-managed quasi-linear dispersion-managed soliton(DMS) third-order dispersion second-order dispersion 
光电子技术
2003, 23(4): 245

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!