作者单位
摘要
国防科技大学空天科学学院,新型陶瓷纤维及其复合材料重点实验室,长沙 410073
超高温陶瓷(UHTC)在航空航天的热防护领域具有重要作用,高质量的UHTC粉体是制备高性能UHTC的重要原料。在制备UHTC粉体的工艺中,前驱体转化法制备的粉体纯度高、粒径小、各组分分布均匀,具有广阔的应用前景。本文根据前驱体合成机理将UHTC前驱体转化法分为金属醇盐配合物合成法、基于格氏反应合成法以及引入支链合成法,综述了近年来通过三种方法制备UHTC粉体的研究进展,分析总结了三种方法的优缺点,指出了UHTC前驱体转化法目前存在的问题以及未来发展方向。
前驱体转化法 超高温陶瓷粉体 反应机理 碳热还原 陶瓷产率 微观结构 precursor-derived method ultra-high temperature ceramics powder reaction mechanism carbothermic reduction ceramic yield microstructure 
硅酸盐通报
2023, 42(8): 2865
作者单位
摘要
1 国防科技大学空天科学学院新型陶瓷纤维及其复合材料重点实验室, 长沙 410073
2 中国运载火箭技术研究院空间物理重点实验室, 北京 100076
超高温陶瓷及其复合材料因具有耐超高温、轻质和抗氧化烧蚀等优点, 目前已成为航空航天领域热结构材料研究的热点和前沿。基于稀土化合物在热障涂层等领域的优异性能和成功应用, 研究人员将稀土化合物引入超高温陶瓷及其复合材料中, 改善氧化层的结构和性质, 以期解决超高温陶瓷基复合材料氧化层增长速度偏快和宽温域高低温循环氧化层易剥落等问题。本文综述了稀土改性超高温陶瓷及其复合材料的研究现状, 分析探讨了改性机理, 并展望了未来的研究发展方向。
超高温陶瓷 超高温陶瓷复合材料 稀土元素 氧化烧蚀行为 化合物改性 氧化层 ultra-high temperature ceramics ultra-high temperature ceramic composite rare earth element oxidation and ablation behavior compound modification oxide layer 
硅酸盐通报
2023, 42(2): 682
作者单位
摘要
1 陕西科技大学材料科学与工程学院, 陕西省无机材料绿色制备与功能化重点实验室, 西安 710021
2 中国科学院上海硅酸盐研究所, 高性能陶瓷和超微结构国家重点实验室, 上海 200050
六硼化钇(YB6)高温下结构不稳定限制了其在超高温领域的应用, 通过引入Yb元素, 可形成高温稳定的(Y1-xYbx)B6固溶体。本文以(Y0.5Yb0.5)2O3和B4C为原料采用硼/碳热还原法制备了(Y0.5Yb0.5)B6粉体, 通过无压烧结实现了陶瓷致密化, 并结合密度泛函理论计算综合分析了材料的晶体结构、微观形貌和力学性能。结果表明, 在1 650 ℃下热处理, B4C过量6.25%时合成的(Y0.5Yb0.5)B6粉体纯度最高。在2 000 ℃下无压烧结获得的(Y0.5Yb0.5)B6陶瓷致密度为95.80%, 但晶粒尺寸偏大, 可达(80.71±35.51) μm。通过两步烧结法所得陶瓷致密度、晶粒尺寸、硬度和断裂韧性分别为95.47%、(14.54±6.31) μm、(14.53±1.37) GPa和(2.81±0.34) MPa·m1/2。陶瓷断口处与典型的高损伤容限陶瓷Ti3SiC2、Hf3AlN的断口形貌十分类似, 表明(Y0.5Yb0.5)B6具有良好的损伤容忍度, 有望提高超高温陶瓷的韧性与延性。
硼化钇 超高温陶瓷 硼/碳热还原法 第一性原理计算 损伤容忍度 yttrium boride ultra-high temperature ceramics boron/carbon thermal reduction method first principle calculation damage tolerance 
硅酸盐通报
2023, 42(1): 276
作者单位
摘要
1 军事科学院, 国防科技创新研究院, 北京 100071
2 中国航发北京航空材料研究院, 石墨烯及应用研究中心, 北京100095
超高温陶瓷材料耐温性能优异, 但本征脆性和较差的抗热冲击性能一直都是限制其进一步工程应用的主要障碍。石墨烯作为一种碳原子排列成蜂窝结构的二维纳米材料, 具有优异的力学、电学和热学性能, 常被作为添加相来改性陶瓷基体, 使其成为陶瓷复合材料中理想的增韧材料, 实现复合材料的功能化和结构化。本文对石墨烯/超高温陶瓷基复合材料的制备工艺、仿生构筑、微观形貌、宏观性能等方面的研究成果进行了全面的综述, 着重论述了石墨烯对超高温陶瓷基体的增韧作用效果及机理、热学性能、抗热震性能、抗氧化性能的影响, 并对目前面临的挑战和未来发展进行展望。
石墨烯 超高温陶瓷复合材料 力学性能 抗热震性能 抗氧化性能 graphene ultra-high temperature ceramic composites mechanical properties thermal shock resistance oxidation resistance 
硅酸盐学报
2022, 50(10): 2734
作者单位
摘要
1 北京理工大学 光电学院 信息光子技术工业和信息化部重点实验室, 北京 100081
2 包头师范学院 物理科学与技术学院, 内蒙古 包头 014030
蓝宝石为晶体材料, 其熔点为2045℃, 具有高强度、高耐热性、高抗腐蚀性等良好的高温物理化学性能。单晶蓝宝石光纤可以在高于1000℃的超高温下传输光信号, 基于其制作的蓝宝石光纤法布里-珀罗(Fabry-Perot, F-P)传感器耐超高温、本征安全, 适用于危险、恶劣的环境中, 近年来, 得到广泛研究, 已研制出用于超高温环境的蓝宝石光纤温度、压力、振动传感器。文章综述了蓝宝石光纤F-P传感器的研究进展, 介绍了课题组在蓝宝石光纤传感技术方面的研究成果, 最后对传感器的研制提出了改进建议。
蓝宝石光纤 光纤传感器 法布里-珀罗腔 超高温 sapphire fiber optical fiber sensor Fabry-Perot cavity ultra-high temperature 
半导体光电
2022, 43(4): 704
作者单位
摘要
采用前驱体浸渍热解(PIP)工艺制备了ZrC-SiC、ZrB2-ZrC-SiC和HfB2-HfC-SiC复相陶瓷基复合材料, 复合材料中的超高温陶瓷相均呈现出亚微米/纳米均匀弥散分布的特征, 对比研究了上述材料在大气等离子和高温电弧风洞考核环境中的超高温烧蚀行为。研究结果表明, 超高温复相陶瓷基复合材料相比传统的未改性SiC基复合材料, 烧蚀后复合材料表面原位生成了固液两相致密氧化膜, 两相协同作用实现了抗冲蚀和抗氧化的效果, 对液相SiO2的流失起到了阻碍作用, 提升了材料的超高温烧蚀性能。在此基础上, 提出了设计超高温复相陶瓷基复合材料应考虑的因素。上述研究结果对陶瓷基复合材料在超高温有限寿命领域的应用具有一定的指导意义。
超高温 复相陶瓷基复合材料 烧蚀行为 基体设计 SiC ultra-high temperature composite ceramics matrix composites ablation behavior SiC 
无机材料学报
2022, 37(1): 86
作者单位
摘要
1 1.国防科技大学 空天科学学院, 新型陶瓷纤维及其复合材料重点实验室, 长沙 410073
2 2.中国人民解放军32382部队, 武汉 430311

TaxHf1-xC固溶陶瓷是碳化钽(TaC)和碳化铪(HfC)在一定条件下以任意比例形成的系列固溶体, 其熔点普遍在4000 K以上, 最高可达4300 K, 且硬度高、模量高、热导率低、抗高温氧化和抗烧蚀性能优异, 具备在极端热环境(>3000 K)下服役的潜力, 成为耐超高温材料领域的研究热点和前沿。本文综述了近年来TaxHf1-xC固溶陶瓷在粉体合成技术、致密化工艺和机理、室温力学性能、热物理性能、抗氧化性能、抗烧蚀性能等方面所取得的研究进展, 分析了TaxHf1-xC固溶陶瓷粉体不同合成技术的优劣及致密化的难点, 讨论了TaxHf1-xC固溶陶瓷组成、结构和性能之间的相互关系。此外, 本文还指出了TaxHf1-xC固溶陶瓷目前存在的挑战, 并对未来潜在的发展方向作了展望。

TaC HfC 耐超高温 固溶陶瓷 极端热环境 综述 TaC HfC ultra-high temperature solid solution ceramics extreme thermal environment review 
无机材料学报
2021, 36(7): 685
陈博文 1,2,3王敬晓 1,2姜佑霖 1,2,3周海军 1,2[ ... ]倪德伟 1,2,*
作者单位
摘要
1 中国科学院 上海硅酸盐研究所 高性能和超微结构国家重点实验室, 上海 200050
2 中国科学院 上海硅酸盐研究所 结构陶瓷与复合材料工程研究中心, 上海 200050
3 中国科学院大学, 北京 100049
本研究提出了一种利用离心纺丝技术制备稳定碳化锆(ZrC)纤维的有效方法。此方法使用醋酸锆和蔗糖作为锆源和碳源, 聚乙烯吡咯烷酮(PVP)作为纺丝助剂, 经过1600 ℃的裂解与碳热还原热处理后, 所纺原丝转化成由均匀纳米ZrC晶体组成的ZrC纤维。研究结果表明, 纤维中残留的少量碳可助力ZrC纤维在2000 ℃的超高温环境下仍保持较好的结构稳定性。
ZrC纤维 离心纺丝 超高温稳定性 zirconium carbide fiber centrifugal spinning ultra-high temperature stability 
无机材料学报
2020, 35(12): 1385
作者单位
摘要
中北大学 电子测试技术重点实验室, 山西 太原 030051
利用表面等离子体改变材料吸收光谱特性越来越受到关注。为了增强超高温金属纳米结构的吸收特性, 设计了超高温金属-金属以及膜层-金属-金属表面等离子体周期纳米结构, 仿真分析其在波长200~4 000 nm光谱范围内, 不同参数对材料吸收谱特性的影响。仿真分析表明, 不同参数的吸收光谱中均会出现吸收峰, 且吸收率达93%以上。而介电材料、金属纳米结构的周期、尺寸和深度是影响吸收率的主要因素。同时, 介电材料和周期还会对吸收峰出现的位置产生影响。该仿真结果为超高温表面等离子体材料的吸收特性应用的研究提供了理论基础。
表面等离子体 超高温 纳米结构 吸收谱 surface plasmonics ultra-high temperature nanostructure absorption spectrum 
红外与激光工程
2016, 45(12): 1216001
作者单位
摘要
1 哈尔滨工业大学电气工程及自动化学院, 黑龙江 哈尔滨 150001
2 航天材料及工艺研究所, 北京 100076
为研究航天领域特种材料高温区域的光谱辐射特性, 建立了基于傅里叶光谱仪的超高温光谱发射率测量系统。 系统线性度是发射率测量精度的保证, 通过测量多温度点黑体辐射的光谱信号, 采用多温度点线性拟合方法求得每个光谱点的光谱信号值与黑体光谱辐射亮度的函数关系式, 并结合仪器线性度测量理论, 建立了光谱发射率测量系统的线性度测量方法。 实验测量了黑体温度范围1 000~2 000 ℃和光谱范围3~20 μm的光谱辐射信号, 求得波长λ=4 μm的理论直线与测量光谱值的线性关系。 实验表明, 仪器在4~18 μm光谱范围响应较好, 除CO2强吸收光谱区域, 仪器的光谱线性度均优于1%。 当测量系统线性度一定时, 温度越高, 光谱误差对发射率的影响越小。 评定光谱发射率测量系统的线性度有利于剔除个别温度点光谱扰动带来的误差。
热辐射特性 光谱发射率 线性度 超高温 傅里叶光谱仪 Thermal radiation properties Spectral emissivity Linearity Ultra- high temperature Fourier spectrometer 
光谱学与光谱分析
2012, 32(2): 313

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!